Gitee图形界面上传(详细步骤)

目录

1.软件安装

2.安装顺序

3.创建仓库

4.克隆远程仓库到本地电脑

提交代码的三板斧


1.软件安装

Git - Downloads (git-scm.com)

Download – TortoiseGit – Windows Shell Interface to Git

2.安装顺序

  • 1. 首先安装git-2.33.1-64-bit.exe,顺序不能搞错
  • 2. 再安装TortoiseGit-2.12.0.0-64bit.msi,这个软件是依赖前一个软件的,在安装的过程中需要选择第一个软件的路径

3.创建仓库

点击个人主页

点击新建仓库

可以设置私有还是公开 

点击仓库名,点击克隆

查看自己的仓库链接,点击一下复制

4.克隆远程仓库到本地电脑

先创建一个自己想放入的文件夹

并进入这个文件夹,点击GIt Clone

把自己仓库的连接填进去

Success就成功了

文件夹里就有了这个文件夹 

提交代码的三板斧

点进这个文件

把自己要上传的文件放进去,这里假设上传这个软件

右键点击,显示更多选项

点击add

弹出这个界面,红框内是添加备注,再点击commit

再点击push

这样就上传成功了,点击close就可以了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/2122.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入了解生成对抗网络(GAN):原理、实现及应用

生成对抗网络(GAN, Generative Adversarial Networks)是由Ian Goodfellow等人于2014年提出的一种深度学习模型,旨在通过对抗训练生成与真实样本相似的数据。GAN在图像生成、图像修复、超分辨率等领域取得了显著的成果。本文将深入探讨GAN的基…

Git的基本命令以及其原理(公司小白学习)

从 Git 配置、代码提交与远端同步三部分展开,重点讲解 Git 命令使用方式及基本原理。 了解这些并不是为了让我们掌握,会自己写版本控制器,更多的是方便大家查找BUG,解决BUG ,这就和八股文一样,大多数都用…

信号与系统初识---信号的分类

文章目录 0.引言1.介绍2.信号的分类3.关于周期大小的求解4.实信号和复信号5.奇信号和偶信号6.能量信号和功率信号 0.引言 学习这个自动控制原理一段时间了,但是只写了一篇博客,其实主要是因为最近在打这个华数杯,其次是因为在补这个数学知识…

【初识扫盲】厚尾分布

厚尾分布(Fat-tailed distribution)是一种概率分布,其尾部比正态分布更“厚”,即尾部的概率密度更大,极端值出现的概率更高。 一、厚尾分布的特征 尾部概率大 在正态分布中,极端值(如距离均值很…

--- 多线程编程 基本用法 java ---

随着时代的发展,单核cpu的发展遇到了瓶颈,而要提高算力就要发展多核cpu,他能允许多个程序同时运行,这时并发编程他能利用到多核的优势,于是就成为了时代所趋了 其实多进程编程也能进行实现并发编程,只不过…

Linux网络_套接字_UDP网络_TCP网络

一.UDP网络 1.socket()创建套接字 #include<sys/socket.h> int socket(int domain, int type, int protocol);domain (地址族): AF_INET网络 AF_UNIX本地 AF_INET&#xff1a;IPv4 地址族&#xff0c;适用于 IPv4 协议。用于网络通信AF_INET6&#xff1a;IPv6 地址族&a…

idea分支合并代码

步骤一 首先把两个分支的代码都提交了&#xff0c;保持和远程仓库一致&#xff0c;不要有任何没提交的代码。如果一些程序的yml配置文件&#xff0c;不想提交&#xff0c;可以复制一个&#xff0c;不受git管理。如果有没有提交的代码&#xff0c;合并分支的时候就会提示那些代…

Java安全—SPEL表达式XXESSTI模板注入JDBCMyBatis注入

前言 之前我们讲过SpringBoot中的MyBatis注入和模板注入的原理&#xff0c;那么今天我们就讲一下利用以及发现。 这里推荐两个专门研究java漏洞的靶场&#xff0c;本次也是根据这两个靶场来分析代码&#xff0c;两个靶场都是差不多的。 https://github.com/bewhale/JavaSec …

docker虚拟机平台未启用问题

在终端中输入如下代码&#xff0c;重启电脑即可 Enable-WindowsOptionalFeature -Online -FeatureName VirtualMachinePlatform 对于Docker Desktop - Unexpected WSL error问题 参考链接 解决WSL2与docker冲突问题

微服务主流框架和基础设施介绍

概述 微服务架构的落地需要解决服务治理问题&#xff0c;而服务治理依赖良好的底层方案。当前&#xff0c;微服务的底层方案总的来说可以分为两 种&#xff1a;微服务SDK &#xff08;微服务框架&#xff09;和服务网格。 微服务框架运行原理&#xff1a; 应用程序通过接入 SD…

微信小程序集成Vant Weapp移动端开发的框架

什么是Vant Weapp Vant 是一个轻量、可靠的移动端组件库&#xff0c;于 2017 年开源。 目前 Vant 官方提供了 Vue 2 版本、Vue 3 版本和微信小程序版本&#xff0c;并由社区团队维护 React 版本和支付宝小程序版本。 官网地睛&#xff1a;介绍 - Vant Weapp (vant-ui.gith…

(STM32笔记)十二、DMA的基础知识与用法 第二部分

我用的是正点的STM32F103来进行学习&#xff0c;板子和教程是野火的指南者。 之后的这个系列笔记开头未标明的话&#xff0c;用的也是这个板子和教程。 DMA的基础知识与用法 二、DMA传输设置1、数据来源与数据去向外设到存储器存储器到外设存储器到存储器 2、每次传输大小3、传…

C语言 - 可变参数函数 va_list、va_start、va_arg、va_end

目录 一、_INTSIZEOF宏分析 二、可变参数函数介绍 1、va_list 2、va_start 3、va_arg 4、va_end 三、使用介绍 示例1&#xff1a; 示例2&#xff1a; 一、_INTSIZEOF宏分析 #define _INTSIZEOF(n) ((sizeof(n)sizeof(int)-1)&~(sizeof(int) - 1) ) 功能&#x…

【Rust自学】12.2. 读取文件

12.2.0. 写在正文之前 第12章要做一个实例的项目——一个命令行程序。这个程序是一个grep(Global Regular Expression Print)&#xff0c;是一个全局正则搜索和输出的工具。它的功能是在指定的文件中搜索出指定的文字。 这个项目分为这么几步&#xff1a; 接收命令行参数读…

记一次OpenEuler Linux磁盘分区表损坏的数据恢复

问题复现 原本有一台GIS地图服务器存放大量数据&#xff0c;突然有一天磁盘满了&#xff0c;于是运维人员照常进行磁盘扩容。但由于误操作&#xff0c;导致使用fdisk的时候把分区表损坏了&#xff0c;表现如下&#xff1a; 这里可以看到启动时能看到xvda被分为了xvda1和xvda2…

二手车交易系统的设计与实现(代码+数据库+LW)

摘 要 如今社会上各行各业&#xff0c;都喜欢用自己行业的专属软件工作&#xff0c;互联网发展到这个时候&#xff0c;人们已经发现离不开了互联网。新技术的产生&#xff0c;往往能解决一些老技术的弊端问题。因为传统二手车交易信息管理难度大&#xff0c;容错率低&#xf…

【大模型系列篇】数字人音唇同步模型——腾讯开源MuseTalk

之前有一期我们体验了阿里开源的半身数字人项目EchoMimicV2&#xff0c;感兴趣的小伙伴可跳转至《AI半身数字人开箱体验——开源项目EchoMimicV2》&#xff0c;今天带大家来体验腾讯开源的数字人音唇同步模型MuseTalk。 MuseTalk 是一个实时高品质音频驱动的唇形同步模型&#…

如何禁用 PySpark 在运行时打印信息

我已经开始使用 PySpark。PySpark 的版本是3.5.4&#xff0c;它是通过 进行安装的pip。 这是我的代码&#xff1a; from pyspark.sql import SparkSession pyspark SparkSession.builder.master("local[8]").appName("test").getOrCreate() df pyspark…

HTML拖拽功能(纯html5+JS实现)

1、HTML拖拽--单元行拖动 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title><…

GLM: General Language Model Pretraining with Autoregressive Blank Infilling论文解读

论文地址&#xff1a;https://arxiv.org/abs/2103.10360 参考&#xff1a;https://zhuanlan.zhihu.com/p/532851481 GLM混合了自注意力和masked注意力&#xff0c;而且使用了2D位置编码。第一维的含义是在PartA中的位置&#xff0c;如5 5 5。第二维的含义是在Span内部的位置&a…