分布式搜索引擎03

1.数据聚合

聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如:

  • 什么品牌的手机最受欢迎?

  • 这些手机的平均价格、最高价格、最低价格?

  • 这些手机每月的销售情况如何?

实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。

1.1.聚合的种类

聚合常见的有三类:

  • 桶(Bucket)聚合:用来对文档做分组

    • TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组

    • Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组

  • 度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等

    • Avg:求平均值

    • Max:求最大值

    • Min:求最小值

    • Stats:同时求max、min、avg、sum等

  • 管道(pipeline)聚合:其它聚合的结果为基础做聚合

注意:参加聚合的字段必须是keyword、日期、数值、布尔类型

 1.2.DSL实现聚合

现在,我们要统计所有数据中的酒店品牌有几种,其实就是按照品牌对数据分组。此时可以根据酒店品牌的名称做聚合,也就是Bucket聚合。

1.2.1.Bucket聚合语法

语法如下:

GET /hotel/_search
{
  "size": 0,  // 设置size为0,结果中不包含文档,只包含聚合结果
  "aggs": { // 定义聚合
    "brandAgg": { //给聚合起个名字
      "terms": { // 聚合的类型,按照品牌值聚合,所以选择term
        "field": "brand", // 参与聚合的字段
        "size": 20 // 希望获取的聚合结果数量
      }
    }
  }
}

结果如图:

1.2.2.聚合结果排序

默认情况下,Bucket聚合会统计Bucket内的文档数量,记为count,并且按照count降序排序。

我们可以指定order属性,自定义聚合的排序方式:

GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "order": {
          "_count": "asc" // 按照_count升序排列
        },
        "size": 20
      }
    }
  }
}

1.2.3.限定聚合范围

默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。

我们可以限定要聚合的文档范围,只要添加query条件即可:

GET /hotel/_search
{
  "query": {
    "range": {
      "price": {
        "lte": 200 // 只对200元以下的文档聚合
      }
    }
  }, 
  "size": 0, 
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "size": 20
      }
    }
  }
}

这次,聚合得到的品牌明显变少了:

1.2.4.Metric聚合语法

上节课,我们对酒店按照品牌分组,形成了一个个桶。现在我们需要对桶内的酒店做运算,获取每个品牌的用户评分的min、max、avg等值。

这就要用到Metric聚合了,例如stat聚合:就可以获取min、max、avg等结果。

GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": { 
      "terms": { 
        "field": "brand", 
        "size": 20
      },
      "aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算
        "score_stats": { // 聚合名称
          "stats": { // 聚合类型,这里stats可以计算min、max、avg等
            "field": "score" // 聚合字段,这里是score
          }
        }
      }
    }
  }
}

这次的score_stats聚合是在brandAgg的聚合内部嵌套的子聚合。因为我们需要在每个桶分别计算。

另外,我们还可以给聚合结果做个排序,例如按照每个桶的酒店平均分做排序:

1.2.5.小结

aggs代表聚合,与query同级,此时query的作用是?

  • 限定聚合的的文档范围

聚合必须的三要素:

  • 聚合名称

  • 聚合类型

  • 聚合字段

聚合可配置属性有:

  • size:指定聚合结果数量

  • order:指定聚合结果排序方式

  • field:指定聚合字段

1.3.RestAPI实现聚合

1.3.1.API语法

聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件。

聚合条件的语法:

聚合的结果也与查询结果不同,API也比较特殊。不过同样是JSON逐层解析:

1.3.2.业务需求

需求:搜索页面的品牌、城市等信息不应该是在页面写死,而是通过聚合索引库中的酒店数据得来的:

​​​​​​​使用聚合功能,利用Bucket聚合,对搜索结果中的文档基于品牌分组、基于城市分组,就能得知包含哪些品牌、哪些城市了。

因为是对搜索结果聚合,因此聚合是限定范围的聚合,也就是说聚合的限定条件跟搜索文档的条件一致。

查看浏览器可以发现,前端其实已经发出了这样的一个请求:

请求参数与搜索文档的参数完全一致

返回值类型就是页面要展示的最终结果:

结果是一个Map结构:

  • key是字符串,城市、星级、品牌、价格

  • value是集合,例如多个城市的名称

1.3.3.业务实现

  • 请求方式:POST

  • 请求路径:/hotel/filters

  • 请求参数:RequestParams,与搜索文档的参数一致

  • 返回值类型:Map<String, List<String>>

代码:

    @PostMapping("filters")public Map<String, List<String>> getFilters(@RequestBody RequestParams params){return hotelService.getFilters(params);}

这里调用了IHotelService中的getFilters方法,尚未实现。

IHotelService中定义新方法:

Map<String, List<String>> filters(RequestParams params);

impl.HotelService中实现该方法:

@Override
public Map<String, List<String>> filters(RequestParams params) {try {// 1.准备RequestSearchRequest request = new SearchRequest("hotel");// 2.准备DSL// 2.1.querybuildBasicQuery(params, request);// 2.2.设置sizerequest.source().size(0);// 2.3.聚合buildAggregation(request);// 3.发出请求SearchResponse response = client.search(request, RequestOptions.DEFAULT);// 4.解析结果Map<String, List<String>> result = new HashMap<>();Aggregations aggregations = response.getAggregations();// 4.1.根据品牌名称,获取品牌结果List<String> brandList = getAggByName(aggregations, "brandAgg");result.put("品牌", brandList);// 4.2.根据品牌名称,获取品牌结果List<String> cityList = getAggByName(aggregations, "cityAgg");result.put("城市", cityList);// 4.3.根据品牌名称,获取品牌结果List<String> starList = getAggByName(aggregations, "starAgg");result.put("星级", starList);return result;} catch (IOException e) {throw new RuntimeException(e);}
}private void buildAggregation(SearchRequest request) {request.source().aggregation(AggregationBuilders.terms("brandAgg").field("brand").size(100));request.source().aggregation(AggregationBuilders.terms("cityAgg").field("city").size(100));request.source().aggregation(AggregationBuilders.terms("starAgg").field("starName").size(100));
}private List<String> getAggByName(Aggregations aggregations, String aggName) {// 4.1.根据聚合名称获取聚合结果Terms brandTerms = aggregations.get(aggName);// 4.2.获取bucketsList<? extends Terms.Bucket> buckets = brandTerms.getBuckets();// 4.3.遍历List<String> brandList = new ArrayList<>();for (Terms.Bucket bucket : buckets) {// 4.4.获取keyString key = bucket.getKeyAsString();brandList.add(key);}return brandList;
}

2.自动补全

当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,如图:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/212407.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue3 + mark.js 实现文字标注功能

效果图 安装依赖 npm install mark.js --save-dev npm i nanoid代码块 <template><!-- 文档标注 --><header><el-buttontype"primary":disabled"selectedTextList.length 0 ? true : false"ghostclick"handleAllDelete"…

AMEYA360--罗姆与Quanmatic公司利用量子技术优化制造工序并完成验证

全球知名半导体制造商罗姆(总部位于日本京都市)于2023年1月起与 Quanmatic Inc.(总部位于日本东京都新宿区&#xff0c;以下简称“Quanmatic”)展开合作&#xff0c;在半导体制造工序之一的EDS工序中测试并引入量子技术&#xff0c;以优化制造工序中的组合。目前&#xff0c;双…

流量分析1--菜刀666

1&#xff1a;菜刀666&#xff1a; 题目描述 分析流量包&#xff0c;过滤http数据流 追踪TCP数据流 对比第5个流和第7个流发现&#xff0c;同样的目录下 多出了6666.jpg。猜测是由攻击者上传&#xff0c;直接在请求包里搜索FFD8--FFD9 保存为1.jpg 利用foremost工具对1.jpg进…

关于IDAE中maven的作用以及如何配置MAVEN

关于IDAE中maven的作用以及如何配置MAVEN 1、Maven是什么2、Idea中对于Maven的配置3、下载依赖时&#xff0c;Idea下方的显示3.1、Maven中央仓库的下载显示界面3.2、阿里云仓库的下载显示界面 4、Maven在Idea中的使用4.1、clean4.2、validate4.3、compile4.4、test&#xff08;…

git-vscode

git-vscode ctrlshiftp 创建分支 create branch 直接切到新的分支了 切换分支 直接点左下角自己选择 vscode中配置仓库 https://blog.csdn.net/zora_55/article/details/129709251 推送tag tag作用就是在 Git 中&#xff0c;标记存储库历史记录中特定提交的一种方式。t…

node.js和浏览器之间的区别

node.js是什么 Node.js是一种基于Chrome V8引擎的JavaScript运行环境&#xff0c;可以在服务器端运行JavaScript代码 Node.js 在浏览器之外运行 V8 JavaScript 引擎。 这使得 Node.js 非常高效。 浏览器如何运行js代码 nodejs运行环境 在浏览器中&#xff0c;大部分时间你所…

三层交换机配置DHCP服务

第一步&#xff1a;进入二层交换机Switch 1&#xff09;输入命令&#xff1a; Switch(config)#vlan 10 Switch(config)#vlan 20 2&#xff09;修改F0/1 和F0/2为access口&#xff0c;F0/24为trunk口 第二步&#xff1a;进入三层交换机 1&#xff09;输入命令 Switch(config)#…

工作中常用的RabbitMQ实践

目录 1.前置 2.导入依赖 3.生产者 4.消费者 5.验证 验证Direct 验证Fanout 验证Topic 1.前置 安装了rabbitmq&#xff0c;并成功启动 2.导入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-…

B树你需要了解一下

介绍B树的度数主要特点应用场景时间复杂度代码示例拓展 介绍 B树&#xff08;B-tree&#xff09;是一种自平衡的树&#xff0c;能够保持数据有序&#xff0c;常被用于数据库和文件系统的实现。 B树可以看作是一般化的二叉查找树&#xff0c;它允许拥有多于2个子节点。与自平衡…

Spring boot 使用Redis 消息发布订阅

Spring boot 使用Redis 消息发布订阅 文章目录 Spring boot 使用Redis 消息发布订阅Redis 消息发布订阅Redis 发布订阅 命令 Spring boot 实现消息发布订阅发布消息消息监听主题订阅 Spring boot 监听 Key 过期事件消息监听主题订阅 最近在做请求风控的时候&#xff0c;在网上搜…

ESP32-Web-Server编程- 在 Web 上开发动态纪念册

ESP32-Web-Server编程- 在 Web 上开发动态纪念册 概述 Web 有很多有趣的玩法&#xff0c;在打开网页的同时送她一个惊喜。 需求及功能解析 本节演示在 ESP32 上部署一个 Web&#xff0c;当打开对应的网页时&#xff0c;将运行动态的网页内容&#xff0c;显示炫酷的纪念贺词…

.NET 8 中 Android 资源生成的改进和变化

作者&#xff1a;Dean Ellis 排版&#xff1a;Alan Wang 随着 .NET 8 的发布&#xff0c;我们引入了一个新系统&#xff0c;用于生成访问 Android 资源的 C# 代码。 在 Xamarin.Android、.NET 6 和 .NET 7 中生成 Resource.designer.cs 文件的系统已经被弃用。 新系统生成一个名…

苍穹外卖+git开源

搁置了很久重新开始学 为了学习方便&#xff0c;苍穹外卖的前后端代码已放至git开源。前端源代码请看给i他-->sky-take-out: 苍穹外卖 git学习-->Git基础使用-CSDN博客 后端接口员工管理和分类管理模块 添加员工&#xff0c;添加的表单账号、手机号、身份证都…

Spring Boot的日志

打印日志 打印日志的步骤: • 在程序中得到日志对象. • 使用日志对象输出要打印的内容 在程序中得到日志对象 在程序中获取日志对象需要使用日志工厂LoggerFactory,代码如下: package com.example.demo;import org.slf4j.Logger; import org.slf4j.LoggerFactory;public c…

安装you-get(mac)

1、首先要有python环境 2、更新pip python -m pip install --upgrade pip 3、安装you-get pip install you-get;

T天池SQL训练营(五)-窗口函数等

–天池龙珠计划SQL训练营 5.1窗口函数 5.1.1窗口函数概念及基本的使用方法 窗口函数也称为OLAP函数。OLAP 是OnLine AnalyticalProcessing 的简称&#xff0c;意思是对数据库数据进行实时分析处理。 为了便于理解&#xff0c;称之为窗口函数。常规的SELECT语句都是对整张表进…

创建vue项目:node.js下载安装、配置环境变量,下载安装cnpm,配置npm的目录、镜像,安装vue、搭建vue项目开发环境(保姆级教程一)

今天讲解 Windows 如何创建 vue 项目&#xff0c;搭建 vue 开发环境&#xff0c;这是这个系列的第一章&#xff0c;有什么问题请留言&#xff0c;请点赞收藏&#xff01;&#xff01;&#xff01; 文章目录 一、Vue简单介绍二、开始搭建1、安装node.js环境2、配置npm下载时的默…

一文3000字从0到1用Python进行gRPC接口测试!

gRPC 是一个高性能、通用的开源RPC框架&#xff0c;其由 Google 主要面向移动应用开发并基于HTTP/2 协议标准而设计&#xff0c;基于 ProtoBuf(Protocol Buffers) 序列化协议开发&#xff0c;且支持众多开发语言。 自gRPC推出以来&#xff0c;已经广泛应用于各种服务之中。在测…

数据可视化免费化的双面影响探析

近年来数据可视化的免费化也越来越明显&#xff0c;今天就以我作为可视化设计师的经验来和大家分析一下&#xff0c;数据可视化工具免费化所带来的利与弊。 先从好处入手&#xff0c;最明显的就是免费化可以让数据可视化工具得到更广泛的使用。 免费数据可视化工具使得更多人可…

docker搭建nginx实现负载均衡

docker搭建nginx实现负载均衡 安装nginx 查询安装 [rootlocalhost ~]# docker search nginx [rootlocalhost ~]# docker pull nginx准备 创建一个空的nginx文件夹里面在创建一个nginx.conf文件和conf.d文件夹 运行映射之前创建的文件夹 端口&#xff1a;8075映射80 docker…