智能优化算法应用:基于侏儒猫鼬算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于侏儒猫鼬算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于侏儒猫鼬算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.侏儒猫鼬算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用侏儒猫鼬算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.侏儒猫鼬算法

侏儒猫鼬算法原理请参考:https://blog.csdn.net/u011835903/article/details/127455123
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

侏儒猫鼬算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明侏儒猫鼬算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/212731.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Clion自定义管理和配置软件构建过程的工具(代替CMake)构建程序

在公司由于需要x86环境和其他arm环境,同时需要使用公司自定义的mine_x86或者mine_orin对代码进行编译。 编译命令如下mine_x86 build -Dlocal1 -j8,为使用Clion对程序进行调试,需要对程序进行设置。方便调试代码时能够断点查看变量。尝试了很多次&#…

区块链实验室(28) - 拜占庭节点劫持区块链仿真

在以前的FISCO环境中仿真拜占庭节点攻击区块链网络。该环境共有100个节点,采用PBFT作为共识机制,节点编号分别为:Node0,Node,… ,Node99。这100个节点的前2010区块完全相同,自区块2011开始分叉。…

为“异常”努力是值得的

异常是OO语言处理错误的方式,在C中,鼓励使用异常。侯捷再书中谈起异常,“十年前撰写“未将异常考虑在内的”函数是为一种美好实践,而今我们致力于写出“异常安全码”。”可见异常安全的重要。 说起异常安全,首先就要是异常的出现…

Kafka中的auto-offset-reset配置

Kafka这个服务在启动时会依赖于Zookeeper,Kafka相关的部分数据也会存储在Zookeeper中。如果kafka或者Zookeeper中存在脏数据的话(即错误数据),这个时候虽然生产者可以正常生产消息,但是消费者会出现无法正常消费消息的…

linux高级篇基础理论七(Tomcat)

♥️作者:小刘在C站 ♥️个人主页: 小刘主页 ♥️不能因为人生的道路坎坷,就使自己的身躯变得弯曲;不能因为生活的历程漫长,就使求索的 脚步迟缓。 ♥️学习两年总结出的运维经验,以及思科模拟器全套网络实验教程。专栏:云计算技…

AWS攻略——创建VPC

文章目录 创建一个可以外网访问的VPCCIDR主路由表DestinationTarget 主网络ACL入站规则出站规则 子网创建EC2测试连接创建互联网网关(IGW)编辑路由表 知识点参考资料 在 《AWS攻略——VPC初识》一文中,我们在AWS默认的VPC下部署了一台可以SS…

GAN:WGAN-GP-带有梯度惩罚的WGAN

论文:https://arxiv.org/pdf/1704.00028.pdf 代码:GitHub - igul222/improved_wgan_training: Code for reproducing experiments in "Improved Training of Wasserstein GANs" 发表:2017 WGAN三部曲的终章-WGAN-GP 摘要 WGAN在…

炫云云渲染支持corona11了!

2023年11月30日,Chaos Corona官网上更新了Corona 11 for 3ds Max和Corona 11 for Cinema 4D版本,这一新版带来了众多令人惊艳的全新功能,为设计师带来了更好的设计体验。炫云云渲染作为渲染行业比较有实力的云渲染,紧随其后&#…

制作一个RISC-V的操作系统三-编译与链接

文章目录 GCCGCC简介GCC的命令格式gcc -Egcc -cgcc -Sgcc -ggcc -vGCC的主要执行步骤GCC涉及的文件类型针对多个源文件的处理 ELFELF介绍ELF文件格式ELF文件处理相关工具:Binutils(binary utility)readlelf -hreadelf -S或readelf -SW&#x…

便宜SSL证书

首先,我们需要了解什么是SSL证书。简单来说,SSL证书是一种用于加密网站数据传输的安全协议,它可以确保用户在访问网站时,数据能够安全地从服务器传输到用户的浏览器。没有SSL证书的网站,用户在访问时可能会遇到不安全的…

crmeb本地开发配置代理

crmeb 是一个开源的商城系统, v5 版本是一个前后端分离的项目, 我们从git仓库中下载下来的是一个文件夹,其结构是这样的 我的系统没有使用docker ,使用的是 laragon 的系统 所以首先我们要在 nginx 中配置 之后, 我们…

十五届蓝桥杯分享会(一)

注:省赛4月,决赛6月 一、蓝桥杯整体介绍 1.十四届蓝桥杯软件电子赛参赛人数:C 8w,java/python 2w,web 4k,单片机 1.8w,嵌入式/EDA5k,物联网 300 1.1设计类参赛人数:平…

Emacs之dired模式重新绑定键值v(一百三十一)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…

Python函数默认参数设置

在某些情况下,程序需要在定义函数时为一个或多个形参指定默认值,这样在调用函数时就可以省略为该形参传入参数值,而是直接使用该形参的默认值。 为形参指定默认值的语法格式如下: 形参名 默认值 从上面的语法格式可以看出&…

什么是网站?

这篇文章是我学习网站开发,阶段性总结出来的。可以帮助你 通俗易懂 地更加深刻理解网站的这个玩意。 一,网站和网页的区别? 网站是由一个个网页组成。我们在浏览器上面看到的每一个页面就是网页,这些 相关的 网页组成一个网站。…

shell命令学习(1)——(待完善)

explainshell.com shell统计当前文件夹下的文件个数、目录个数Linux之shell常用命令(三) sort(排序)、uniq(处理重复字符) linux中shell将换行输入到文件中 shell脚本,将多行内容写入文件中 f…

[idea]idea连接clickhouse23.6.2.18

一、安装驱动 直接在pom.xml加上那个lz4也是必要的不然会报错 <dependency><groupId>com.clickhouse</groupId><artifactId>clickhouse-jdbc</artifactId><version>0.4.2</version></dependency><dependency><group…

数据链路层之VLAN基本概念和基本原理

学习的最大理由是想摆脱平庸&#xff0c;早一天就多一份人生的精彩&#xff1b;迟一天就多一天平庸的困扰。各位小伙伴&#xff0c;如果您&#xff1a; 想系统/深入学习某技术知识点… 一个人摸索学习很难坚持&#xff0c;想组团高效学习… 想写博客但无从下手&#xff0c;急需…

Numpy数组的数据类型汇总 (第4讲)

Numpy数组的数据类型 &#xff08;第4讲&#xff09;         &#x1f379;博主 侯小啾 感谢您的支持与信赖。☀️ &#x1f339;꧔ꦿ&#x1f339;꧔ꦿ&#x1f339;꧔ꦿ&#x1f339;꧔ꦿ&#x1f339;꧔ꦿ&#x1f339;꧔ꦿ&#x1f339;꧔ꦿ&#x1f339;꧔ꦿ&…

前端——html拖拽原理

文章目录 ⭐前言⭐draggable属性&#x1f496; api&#x1f496; 单向拖动示例&#x1f496; 双向拖动示例 ⭐总结⭐结束 ⭐前言 大家好&#xff0c;我是yma16&#xff0c;本文分享关于 前端——html拖拽原理。 vue3系列相关文章&#xff1a; vue3 fastapi 实现选择目录所有文…