ELK 日志解决方案

在这里插入图片描述

ELK 是目前最流行的集中式日志解决方案,提供了对日志收集、存储、展示等一站式的解决方案。

ELK 分别指 Elasticsearch、Logstash、Kibana。

  1. Elasticsearch:分布式数据搜索引擎,基于 Apache Lucene 实现,可集群,提供数据的集中式存储,分析,以及强大的数据搜索和聚合功能。
  2. Logstash:数据收集引擎,相较于Filebeat 比较重量级,但它集成了大量的插件,支持丰富的数据源收集,对收集的数据可以过滤,分析,格式化日志格式。
  3. Kibana:数据的可视化平台,通过该 web 平台可以实时查看 Elasticsearch 中的相关数据,并提供了丰富的图表统计功能。
  4. Filebeat:Filebeat 是一款轻量级,占用服务资源非常少的数据收集引擎,它是 ELK 家族的新成员,可以代替 Logstash 作为在应用服务器端的日志收集引擎,支持将收集到的数据输出到 Kafka,Redis 等队列。

一、Elasticsearch

1.1 安装配置

1.1.1 拉取镜像
[root@localhost software]# docker pull elasticsearch:7.17.7
1.1.2 配置文件

第一步:在 Linux 上创建三个数据挂载目录。
在这里插入图片描述
第二步:在 conf 目录下创建 elasticsearch.yml 文件,并修改权限为777。

[root@localhost elasticsearch]# cd conf/
[root@localhost conf]# touch elasticsearch.yml
[root@localhost conf]# chmod 777 elasticsearch.yml 
[root@localhost conf]# ll
总用量 0
-rwxrwxrwx. 1 root root 0 125 11:03 elasticsearch.yml

配置内容如下:
在这里插入图片描述

http:host: 0.0.0.0cors:enabled: trueallow-origin: "*"
xpack:security:enabled: false
1.1.3 修改 Linux 的 vm.max_map_count

直接启动后会报下面的异常

max virtual memory areas vm.max_map_count [65530] is too low, increase to at least [262144]

表示系统虚拟内存默认最大映射数为65530,无法满足ES系统要求,需要调整为262144以上。

修改方法如下:
查看 sysctl -a|grep vm.max_map_count
修改 sysctl -w vm.max_map_count=262144

1.2 创建运行

docker run  -itd \
--name es \
--privileged \
--network docker_net \
--ip 172.18.12.80 \
-p 9200:9200 \
-p 9300:9300 \
-e "discovery.type=single-node" \
-e ES_JAVA_OPTS="-Xms4g -Xmx4g" \
-v /usr/local/software/elk/elasticsearch/conf/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml \
-v /usr/local/software/elk/elasticsearch/data:/usr/share/elasticsearch/data \
-v /usr/local/software/elk/elasticsearch/plugins:/usr/share/elasticsearch/plugins \
elasticsearch:7.17.7

容器创建并运行成功后,我们在浏览器里面访问 虚拟机地址:9200,出现内容表示运行成功。
在这里插入图片描述

1.3 ES 的分词器

1.3.1 下载并上传分词器到 Linux 中

下载链接:https://github.com/medcl/elasticsearch-analysis-ik/releases
注意:需下载和 es 一致的版本,避免出错。

上传到 /usr/local/software/elk/plugins/目录下。

1.3.2 拷贝分词器插件到容器 ik 文件夹
[root@localhost plugins]# docker cp elasticsearch-analysis-ik-7.17.7.zip es:/usr/share/elasticsearch/plugins/ik
1.3.3 解压分词器

进入容器 ik 文件夹下面(没有ik文件夹就手动创建),解压插件。
解压:

unzip elasticsearch-analysis-ik-7.17.7.zip

解压完将压缩包删除,并记得重启容器。

二、Kibana

2.1 安装

安装 Kibana 前需保证 ES 已经运行成功。

2.1.1 拉取镜像
docker pull kibana:7.17.7

注意版本尽量保持一致。

2.1.2 创建并运行容器
docker run -it \
--name kibana \
--privileged \
--network docker_net \
--ip 172.18.12.81 \
-e "ELASTICSEARCH_HOSTS=http://192.168.200.135:9200" \
-p 5601:5601 \
-d kibana:7.17.7
2.1.3 测试

浏览器打开 http://虚拟机地址:5601/ 成功进入即表示运行成功。
在这里插入图片描述

2.2 简单使用

  1. 打开 Dev Tools
    在这里插入图片描述
  2. 执行查询,可看到出现右面的数据
    在这里插入图片描述

2.3 测试分词器

2.3.1 标准分词器

在这里插入图片描述
如上图所示,标准分词器对中文不太友好。

2.3.2 ES 分词器

在这里插入图片描述
如上图所示,es 分词器对中文分词好一点,但是还是不够灵活。所以我们可以自定义一下 es 的分词器词典。

2.3.3 自定义 es 分词器词典
  1. 进入 es 容器的 ik/config 目录
    在这里插入图片描述
  2. 查看配置文件
    在这里插入图片描述
    注意:ext_dict_my.dic 是我自定义的词典文件,默认没有。
  3. 编写自己的配置文件
    在这里插入图片描述
  4. 重启容器,并测试 。

三、Logstash

3.1 安装

3.1.1 拉取 logstash
[root@localhost ~]# docker pull logstash:7.17.7
3.1.2 创建容器
docker run -it \
--name logstash \
--privileged \
-p 5044:5044 \
-p 9600:9600 \
--network docker_net \
--ip 172.18.12.82 \
-v /etc/localtime:/etc/localtime \
-d logstash:7.17.7

3.2 容器配置

有三个配置文件,分别是
在这里插入图片描述
在这里插入图片描述
我们在宿主机创建一个 logstash 文件夹( /usr/local/software/elk/logstash),将三个配置文件复制到这个目录下,方便编辑。

logstash.yml

path.logs: /usr/share/logstash/logs
config.test_and_exit: false
config.reload.automatic: false
http.host: "0.0.0.0"
xpack.monitoring.elasticsearch.hosts: [ "http://192.168.200.135:9200" ]

piplelines.xml

- pipeline.id: mainpath.config: "/usr/share/logstash/pipeline/logstash.conf"

logstash.conf

input {tcp {mode => "server"host => "0.0.0.0"port => 5044codec => json_lines}
}
filter{
}
output {elasticsearch {hosts => ["192.168.200.135:9200"]       #elasticsearch的ip地址 index => "elk"                          #索引名称}stdout { codec => rubydebug }
}

修改完成后,将配置文件拷贝到容器相应位置,并重启容器。

3.3 释放端口

 firewall-cmd --add-port=9600/tcp --permanent firewall-cmd --add-port=5044/tcp --permanentfirewall-cmd --reload

四、springboot 中使用 logstash

4.1 引入框架

<dependency><groupId>net.logstash.logback</groupId><artifactId>logstash-logback-encoder</artifactId><version>7.3</version>
</dependency>

4.2 创建 logback-spring.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- 日志级别从低到高分为TRACE < DEBUG < INFO < WARN < ERROR < FATAL,如果设置为WARN,则低于WARN的信息都不会输出 -->
<!-- scan:当此属性设置为true时,配置文档如果发生改变,将会被重新加载,默认值为true -->
<!-- scanPeriod:设置监测配置文档是否有修改的时间间隔,如果没有给出时间单位,默认单位是毫秒。当scan为true时,此属性生效。默认的时间间隔为1分钟。 -->
<!-- debug:当此属性设置为true时,将打印出logback内部日志信息,实时查看logback运行状态。默认值为false。 -->
<configuration scan="true" scanPeriod="10 seconds"><!--1. 输出到控制台--><appender name="CONSOLE" class="ch.qos.logback.core.ConsoleAppender"><!--此日志appender是为开发使用,只配置最低级别,控制台输出的日志级别是大于或等于此级别的日志信息--><filter class="ch.qos.logback.classic.filter.ThresholdFilter"><level>DEBUG</level></filter><encoder><pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} -%5level ---[%15.15thread] %-40.40logger{39} : %msg%n</pattern><!-- 设置字符集 --><charset>UTF-8</charset></encoder></appender><!-- 2. 输出到文件  --><appender name="FILE" class="ch.qos.logback.core.rolling.RollingFileAppender"><!--日志文档输出格式--><append>true</append><encoder><pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} -%5level ---[%15.15thread] %-40.40logger{39} : %msg%n</pattern><charset>UTF-8</charset> <!-- 此处设置字符集 --></encoder></appender><!--3. LOGSTASH config --><appender name="LOGSTASH" class="net.logstash.logback.appender.LogstashTcpSocketAppender"><destination>192.168.200.135:5044</destination><encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder"><!--自定义时间戳格式, 默认是yyyy-MM-dd'T'HH:mm:ss.SSS<--><timestampPattern>yyyy-MM-dd HH:mm:ss</timestampPattern><customFields>{"appname":"QueryApp"}</customFields></encoder></appender><root level="DEBUG"><appender-ref ref="CONSOLE"/><appender-ref ref="FILE"/><appender-ref ref="LOGSTASH"/></root>
</configuration>

注意这个地址,需配置 es 的地址。
在这里插入图片描述
文件存放位置
在这里插入图片描述

4.3 测试代码

@Slf4j
@RestController
@RequestMapping("/api/query")
public class QueryController {@Autowiredprivate IBookDocService ibs;@GetMapping("/helloLog")public HttpResp helloLog(){List<BookDoc> all = ibs.findAll();log.debug("从es中查询到的数据:{}",all);log.debug("我是来测试logstash是否工作的");return HttpResp.success(all.subList(0,10));}
}

4.4 Kibana 中查看

4.4.1 创建一个索引
put elk

elk 名称是之前 logstash.conf 文件中配置的。

在这里插入图片描述

4.4.2 创建索引模式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
执行操作,如搜索。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/214192.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

本地搭建Linux DataEase数据可视化分析工具并实现公网访问

文章目录 前言1. 安装DataEase2. 本地访问测试3. 安装 cpolar内网穿透软件4. 配置DataEase公网访问地址5. 公网远程访问Data Ease6. 固定Data Ease公网地址 前言 DataEase 是开源的数据可视化分析工具&#xff0c;帮助用户快速分析数据并洞察业务趋势&#xff0c;从而实现业务…

软件工程复习

一、题型 单项选择题 20分 填空题 10分 判断题 10分 简答题 18分 应用题 12分 综合题 30分 软件程序数据文档 软件是无形的、不可见的逻辑实体 20世纪60年代末爆发软件危机 软件危机是指软件在开发与维护过程中遇到的一系列严重的问题 …

Mac安装Anaconda3最新实用教程

Anaconda3安装 1、Anaconda3下载 我用的是这个链接&#xff1a;https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ 可以按需要选择自己需要的版本&#xff0c;也可以自行搜索其他网站下载 下载完成之后一路默认安装就可以了。 安装好之后可以在终端试一下&#xff1a;…

JS基础之原型原型链

JS基础之原型&原型链 原型&原型链构造函数创建对象prototypeprotoconstructor实例与原型原型的原型原型链其他constructorproto继承 原型&原型链 构造函数创建对象 我们先使用构造函数创建一个对象&#xff1a; function Person(){ } var person new Person();…

计网实验7

解决&#xff1a;路由器用rip连接&#xff0c;主机通过域名访问&#xff0c;主机之间发送电子邮件 实验步骤 1.搞好部件 2.配好两台主机的ip,掩码&#xff0c;网关 3.连接一下两台主机&#xff0c;由于两台路由器没有连接&#xff0c;所以两台主机也无法连通&#xff0c;丢包率…

[Linux] nginx防盗链与优化

一、Nginx的页面优化 1.1 Nginx的网页压缩 在Nginx的ngx_http_gzip_module压缩模块提供对文件内容压缩的功能。进行相关的配置修改&#xff0c;就能实现Nginx页面的压缩&#xff0c;达到节约带宽&#xff0c;提升用户访问速度 vim /usr/local/nginx/conf/nginx.conf http { .…

web前端之css变量的妙用、通过JavaScrip改变css文件中的属性值、querySelector、setProperty

MENU 效果图htmlJavaScripstylequerySelectorsetProperty 效果图 html <div id"idBox" class"p_r w_680 h_160 b_1s_red"><div id"idItem" class"p_a l_0 t_30 w_100 h_100 bc_rgba_255_00_05 radius_50_"></div> …

HarmonyOS Developer——鸿蒙【构建第一个JS应用(FA模型)】

创建JS工程 JS工程目录结构 构建第一个页面 构建第二个页面 实现页面间的跳转 使用真机运行应用 说明 为确保运行效果&#xff0c;本文以使用DevEco Studio 3.1 Release版本为例&#xff0c;点击此处获取下载链接。 创建JS工程 若首次打开DevEco Studio&#xff0c;请点击…

排序算法-选择/堆排序(C语言)

1基本思想&#xff1a; 每一次从待排序的数据元素中选出最小&#xff08;或最大&#xff09;的一个元素&#xff0c;存放在序列的起始位置&#xff0c;直到全部待排序的 数据元素排完 。 2 直接选择排序: 在元素集合 array[i]--array[n-1] 中选择关键码最大 ( 小 ) 的数据元素…

《PySpark大数据分析实战》图书上线啦

《PySpark大数据分析实战》图书上线啦 《PySpark大数据分析实战》图书上线啦特殊的日子关于创作关于数据关于Spark关于PySpark关于图书/专栏 《PySpark大数据分析实战》图书上线啦 特殊的日子 不知不觉一转眼入驻CSDN已经满一年了&#xff0c;这真是一个充满意义的特殊的日子&…

《python每天一小段》--12 数据可视化《1》

欢迎阅读《Python每天一小段》系列&#xff01;在本篇中&#xff0c;将使用Python Matplotlib实现数据可视化的简单图形。 文章目录 一、概念&#xff08;1&#xff09;安装matplotlib&#xff08;2&#xff09;数据可视化实现步骤 二、绘制简单的折线图&#xff08;1&#xff…

mysql中NULL值

mysql中NULL值表示“没有值”&#xff0c;它跟空字符串""是不同的 例如&#xff0c;执行下面两个插入记录的语句&#xff1a; insert into test_table (description) values (null); insert into test_table (description) values ();执行以后&#xff0c;查看表的…

Navicat 技术指引 | 连接 GaussDB 分布式

Navicat Premium&#xff08;16.3.3 Windows 版或以上&#xff09;正式支持 GaussDB 分布式数据库。GaussDB 分布式模式更适合对系统可用性和数据处理能力要求较高的场景。Navicat 工具不仅提供可视化数据查看和编辑功能&#xff0c;还提供强大的高阶功能&#xff08;如模型、结…

基于人工智能技术的《量化投资AI系统》集群架构设计与实现

乔总&#xff1a;您好&#xff01; 前些日子你我的共同朋友潘总&#xff0c;推荐您来聊聊将ChatGPT应用于量化投资的合作。在与您及您的团队进行了超过2个多小时的沟通后&#xff0c;恕我直言&#xff0c;不客气地说&#xff0c;感觉您的团队对人工智能技术几乎是空白。为了让…

使用linux CentOS本地部署SQL Server数据库

&#x1f308;个人主页&#xff1a;聆风吟 &#x1f525;系列专栏&#xff1a;数据结构、Cpolar杂谈 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 &#x1f4cb;前言一. 安装sql server二. 局域网测试连接三. 安装cpolar内网穿透四. 将sqlserver映射…

kubectl获取ConfigMap导出YAML时如何忽略某些字段

前言&#xff1a; 当我们在使用Kubernetes时&#xff0c;常常需要通过kubectl命令行工具来管理资源。有时我们也想将某个资源的配置导出为YAML文件&#xff0c;这样做有助于版本控制和资源的迁移。然而&#xff0c;默认情况下&#xff0c;使用kubectl get命令导出资源配置会包…

JVM 分析GC日志

GC日志参数 -verbose:gc 输出gc日志信息&#xff0c;默认输出到标准输出 -XX:PrintGC 输出GC日志。类似&#xff1a;-verbose:gc -XX:PrintGCDetails 在发生垃圾回收时打印内存回收详细的日志&#xff0c;并在进程退出时输出当前内存各区域分配情况 -XX:PrintGCTimeStam…

基于SpringBoot+uniapp微信小程序校园点餐平台详细设计和实现

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

vue3 setup语法糖 多条件搜索(带时间范围)

目录 前言&#xff1a; setup介绍&#xff1a; setup用法&#xff1a; 介绍&#xff1a; 前言&#xff1a; 不管哪个后台管理中都会用到对条件搜索带有时间范围的也不少见接下来就跟着我步入vue的多条件搜索&#xff08;带时间范围&#xff09; 在 Vue 3 中&#xff0c;你…

3接上篇 我的自定义GPTs的改进优化 与物理世界连接成功 GPTs的创建与使用定义和执行特定任务的功能模块 通过API与外部系统或服务的交互

https://blog.csdn.net/chenhao0568/article/details/134875067?spm1001.2014.3001.5502 从服务器日志里看到请求多了一个“location” 23.102.140.123 - - [08/Dec/2023:14:02:20 0800] "GET /getWeather.php?location&locationNewYork HTTP/1.1" 200 337 &…