分类预测 | SSA-HKELM-Adaboost麻雀算法优化混合核极限学习机的数据分类预测
目录
- 分类预测 | SSA-HKELM-Adaboost麻雀算法优化混合核极限学习机的数据分类预测
- 分类效果
- 基本描述
- 程序设计
- 参考资料
分类效果
基本描述
1.SSA-HKELM-Adaboost麻雀算法优化混合核极限学习机的数据分类预测(完整源码和数据)
2.自带数据,多输入,单输出,多分类。程序可出分类效果图,迭代图,混淆矩阵图。
3.直接替换数据即可使用,保证程序可正常运行。运行环境MATLAB2018及以上。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
程序设计
- 完整程序和数据私信博主回复SSA-HKELM-Adaboost麻雀算法优化混合核极限学习机的数据分类预测。
for i=1:size(SalpPositions,1)SalpPositions= SalpPositions';if i<=N/2for j=1:1:dimc2=rand();c3=rand();%%%%%%%%%%%%% % Eq. (3.1) in the paper %%%%%%%%%%%%%%if c3<0.5 SalpPositions(j,i)=FoodPosition(j)+c1*((ub(j)-lb(j))*c2+lb(j));elseSalpPositions(j,i)=FoodPosition(j)-c1*((ub(j)-lb(j))*c2+lb(j));end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%endelseif i>N/2 && i<N+1point1=SalpPositions(:,i-1);point2=SalpPositions(:,i);SalpPositions(:,i)=(point2+point1)/2; % % Eq. (3.4) in the paperendSalpPositions= SalpPositions';endfor i=1:size(SalpPositions,1)Tp=SalpPositions(i,:)>ub';Tm=SalpPositions(i,:)<lb';SalpPositions(i,:)=(SalpPositions(i,:).*(~(Tp+Tm)))+ub'.*Tp+lb'.*Tm;SalpFitness(1,i)=fobj(SalpPositions(i,:));if SalpFitness(1,i)<FoodFitnessFoodPosition=SalpPositions(i,:);FoodFitness=SalpFitness(1,i); endendConvergence_curve(l)=FoodFitness;
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229