【组合数学】递推关系

目录

  • 1. 递推关系建立
  • 2. 常系数齐次递推关系的求解
  • 3. 常系数非齐次递推关系的求解
  • 4. 迭代法

1. 递推关系建立

给定一个数的序列 f ( 0 ) , f ( 1 ) , . . . , f ( n ) , . . . , f (0), f(1), ..., f(n ),... , f(0),f(1),...,f(n),..., 若存在整数 n 0 n_0 n0 ,使当 n ≥ n 0 n≥ n_0 nn0 时,可以用等号(或大于号、小于号)将 f ( n ) f (n) f(n) 与前面的某些项 f ( i ) ( 0 ≤ i < n ) f (i) (0 ≤ i< n) f(i)(0i<n) 联系起来,这样的式子称作递推关系
建立递推关系的步骤如下:

  1. 找第 n 项与其前面最近几项的关系
  2. 获得最前面几项的具体值,即初值

习题1、 n 位四进制数中,有偶数个 0 的序列共有多少个?
解: 设 f ( n ) f(n) f(n) 表示 n 位四进制数中有偶数个 0 的序列,它可由两部分生成:
(1) 在 n −1位四进制数中有偶数个 0 的序列上再添一位非 0(即 1,2,3)的数,可产生 3 f ( n − 1 ) 3f (n −1) 3f(n1)
(2) 在 n −1位四进制数中有奇数个 0 的序列上再添一位 0,可产生 4 n − 1 − f ( n − 1 ) 4^{n-1}-f(n-1) 4n1f(n1)
由加法原则 f ( n ) = 3 f ( n − 1 ) + 4 n − 1 − f ( n − 1 ) = 4 n − 1 + 2 f ( n − 1 ) f(n)=3f(n-1)+4^{n-1}-f(n-1)=4^{n-1}+2f(n-1) f(n)=3f(n1)+4n1f(n1)=4n1+2f(n1)显然 f ( 1 ) = 3 f(1)=3 f(1)=3 所以构成带初值的递推关系 { f ( n ) = 4 n − 1 + 2 f ( n − 1 ) f ( 1 ) = 3 \left\{\begin{matrix} f(n)=4^{n-1}+2f(n-1)\\ f(1)=3 \end{matrix}\right. {f(n)=4n1+2f(n1)f(1)=3

习题2、 1×n 棋盘用红、白、蓝 3 种颜色着色,不允许相邻两格都着红色,求着色方案数
解: 设 f ( n ) f (n ) f(n) 表示满足条件的着色方案数。在该棋盘上着色,其方案可分成如下 2 类
(1) 第一个格子着白/蓝色,余下的是1x(n-1)的棋盘,它所满足条件的着色方案数是: 2 f ( n − 1 ) 2f(n-1) 2f(n1)
(2) 第一个格子着红色,第二个格子着白/蓝色,余下1x(n-2)的棋盘,着色方案数是: 2 f ( n − 2 ) 2f(n-2) 2f(n2)

故总的着色方案数为 { f ( n ) = 2 f ( n − 1 ) + 2 f ( n − 2 ) f ( 1 ) = 3 , f ( 2 ) = 8 \left\{\begin{matrix} f(n)=2f(n-1)+2f(n-2)\\ f(1)=3,f(2)=8 \end{matrix}\right. {f(n)=2f(n1)+2f(n2)f(1)=3,f(2)=8

给定递推关系: f ( n ) = c 1 ( n ) f ( n − 1 ) + c 2 ( n ) f ( n − 2 ) + . . . + c k ( n ) f ( n − k ) + g ( n ) f(n)=c_1(n)f(n-1)+c_2(n)f(n-2)+...+c_k(n)f(n-k)+g(n) f(n)=c1(n)f(n1)+c2(n)f(n2)+...+ck(n)f(nk)+g(n)其中 c k ( n ) ≠ 0 c_k(n)\ne 0 ck(n)=0,则称该关系为 { f ( n ) } \{ f(n)\} {f(n)} 的 k 阶线性递推关系
如果 g ( n ) = 0 g(n)=0 g(n)=0 , 则称之为齐次

2. 常系数齐次递推关系的求解

f ( n ) = c 1 ( n ) f ( n − 1 ) + c 2 ( n ) f ( n − 2 ) + . . . + c k ( n ) f ( n − k ) f(n)=c_1(n)f(n-1)+c_2(n)f(n-2)+...+c_k(n)f(n-k) f(n)=c1(n)f(n1)+c2(n)f(n2)+...+ck(n)f(nk)
方程 x k − c 1 x k − 1 − c 2 x k − 2 − . . . − c k = 0 x^k-c_1x^{k-1}-c_2x^{k-2}-...-c_k=0 xkc1xk1c2xk2...ck=0是上述递推关系的的特征方程,它的 k k k 个根 q 1 , q 2 , . . . , q k q_1,q_2,...,q_k q1,q2,...,qk(可能有重根)叫作该递推关系的特征根,其中 q i ( i = 1 , 2 , . . . , k ) q_i (i=1,2,... , k ) qi(i=1,2,...,k)是复数。

定理 2.1:设 q q q 是非零复数,当且仅当 q 是它的特征根, f ( n ) = q n f(n)=q^n f(n)=qn 是递推关系的解

定理 2.2:如果 h 1 ( n ) , h 2 ( n ) h_1(n),h_2(n) h1(n),h2(n)都是递推关系的解, b 1 b_1 b1 b 2 b_2 b2是常数,则 b 1 h 1 ( n ) + b 2 h 2 ( n ) b_1h_1(n)+b_2h_2(n) b1h1(n)+b2h2(n)也是递推关系的解

定理 2.3:设 q 1 , q 2 , . . . , q k q_1,q_2,...,q_k q1,q2,...,qk是递推关系的 k 个互不相等的特征根 b 1 b_1 b1 b 2 b_2 b2是常数,则 f ( n ) = b 1 q 1 n + b 2 q 2 n + . . . + b k q k n f(n)=b_1q_1^n+b_2q_2^n+...+b_kq_k^n f(n)=b1q1n+b2q2n+...+bkqkn 是递推关系通解

习题3、 求解递推关系 { f ( n ) = 7 f ( n − 1 ) − 12 f ( n − 2 ) f ( 0 ) = 2 , f ( 1 ) = 7 \left\{\begin{matrix} f(n)=7f(n-1)-12f(n-2)\\ f(0)=2,f(1)=7 \end{matrix}\right. {f(n)=7f(n1)12f(n2)f(0)=2,f(1)=7

解: 先求这个递推关系的通解。其特征方程为 x 2 − 7 x + 12 = 0 x^2-7x+12=0 x27x+12=0,解这个方程得 x 1 = 4 , x 2 = 3 x_1=4,x_2=3 x1=4,x2=3所以通解为 f ( n ) = c 1 ⋅ 4 n + c 2 ⋅ 3 n f(n)=c_1\cdot 4^n+c_2 \cdot 3^n f(n)=c14n+c23n
带入初值确定 c 1 , c 2 c_1,c_2 c1,c2,得 { c 1 + c 2 = 2 4 c 1 + 3 c 2 = 7 \left\{\begin{matrix} c_1+c_2=2\\ 4c_1+3c_2=7 \end{matrix}\right. {c1+c2=24c1+3c2=7
c 1 = 1 , c 2 = 1 c_1=1 ,c_2=1 c1=1,c2=1
所以通解为 f ( n ) = 4 n + 3 n f(n)=4^n+3^n f(n)=4n+3n

习题4、 求解递推关系 { f ( n ) = f ( n − 1 ) + 9 f ( n − 2 ) − 9 f ( n − 3 ) f ( 0 ) = 0 , f ( 1 ) = 1 , f ( 2 ) = 2 \left\{\begin{matrix} f(n)=f(n-1)+9f(n-2)-9f(n-3)\\ f(0)=0,f(1)=1,f(2)=2 \end{matrix}\right. {f(n)=f(n1)+9f(n2)9f(n3)f(0)=0,f(1)=1,f(2)=2

解: 先求这个递推关系的通解。其特征方程为 x 3 − x 2 − 9 x + 9 = 0 x^3-x^2-9x+9=0 x3x29x+9=0,解这个方程得 x 1 = 1 , x 2 = 3 , x 3 = − 3 x_1=1,x_2=3,x_3=-3 x1=1,x2=3,x3=3所以通解为 f ( n ) = c 1 ⋅ 1 n + c 2 ⋅ 3 n + c 3 ⋅ ( − 3 ) n f(n)=c_1\cdot 1^n+c_2 \cdot 3^n+c_3\cdot (-3)^n f(n)=c11n+c23n+c3(3)n
带入初值确定 c 1 , c 2 , c 3 c_1,c_2,c_3 c1,c2,c3,得 { c 1 + c 2 + c 3 = 0 c 1 + 3 c 2 − 3 c 3 = 1 c 1 + 9 c 2 + 9 c 3 = 2 \left\{\begin{matrix} c_1+c_2+c_3=0\\ c_1+3c_2-3c_3=1\\ c_1+9c_2+9c_3=2 \end{matrix}\right. c1+c2+c3=0c1+3c23c3=1c1+9c2+9c3=2
c 1 = − 1 4 , c 2 = 1 3 , c 3 = − 1 12 c_1=-\frac{1}{4} ,c_2=\frac{1}{3},c_3=-\frac{1}{12} c1=41,c2=31,c3=121

所以通解为 f ( n ) = − 1 4 ⋅ 1 n + 1 3 ⋅ 3 n − 1 12 ⋅ ( − 3 ) n f(n)=-\frac{1}{4}\cdot 1^n+\frac{1}{3} \cdot 3^n-\frac{1}{12}\cdot (-3)^n f(n)=411n+313n121(3)n

定理 2.4:设 q 1 , q 2 , . . . , q k q_1,q_2,...,q_k q1,q2,...,qk是递推关系的全部不同的特征根,其重数分别为 e 1 , e 2 , . . . , e t e_1,e_2,...,e_t e1,e2,...,et ( e 1 + e 2 + . . . + e t = k ) (e_1+e_2+...+e_t=k) (e1+e2+...+et=k),则递推关系的通解为 f ( n ) = f 1 ( n ) + f 2 ( n ) + . . . f t ( n ) f(n)=f_1(n)+f_2(n)+...f_t(n) f(n)=f1(n)+f2(n)+...ft(n)其中 f i ( n ) = ( b i 1 + b i 2 n + . . . + b i e i n e i − 1 ) ⋅ q i n ( 1 ≤ i ≤ t ) f_i(n)=(b_{i_1}+b_{i_2}n+...+b_{i_{e_i}}n^{e_i-1})\cdot q_i^n \quad(1\le i\le t) fi(n)=(bi1+bi2n+...+bieinei1)qin(1it)

习题5、 求解递推关系 { f ( n ) = 3 f ( n − 2 ) − 2 f ( n − 3 ) ( n ≥ 3 ) f ( 0 ) = 1 , f ( 1 ) = 0 , f ( 2 ) = 0 \left\{\begin{matrix} f(n)=3f(n-2)-2f(n-3)\quad (n\ge3)\\ f(0)=1,f(1)=0,f(2)=0 \end{matrix}\right. {f(n)=3f(n2)2f(n3)(n3)f(0)=1,f(1)=0,f(2)=0

解: 先求这个递推关系的通解。其特征方程为 x 3 − 3 x + 2 = 0 x^3-3x+2=0 x33x+2=0,解这个方程得 x 1 = 1 , x 2 = 1 , x 3 = − 2 x_1=1,x_2=1,x_3=-2 x1=1,x2=1,x3=2所以通解为 f ( n ) = c 1 ⋅ 1 n + c 2 n ⋅ 1 n + c 3 ⋅ ( − 2 ) n f(n)=c_1\cdot 1^n+c_2n \cdot 1^n+c_3\cdot (-2)^n f(n)=c11n+c2n1n+c3(2)n
带入初值确定 c 1 , c 2 , c 3 c_1,c_2,c_3 c1,c2,c3,得 { c 1 + c 3 = 1 c 1 + c 2 − 2 c 3 = 0 c 1 + 2 c 2 + 4 c 3 = 0 \left\{\begin{matrix} c_1+c_3=1\\ c_1+c_2-2c_3=0\\ c_1+2c_2+4c_3=0 \end{matrix}\right. c1+c3=1c1+c22c3=0c1+2c2+4c3=0
c 1 = 8 9 , c 2 = − 2 3 , c 3 = 1 9 c_1=\frac{8}{9} ,c_2=-\frac{2}{3},c_3=\frac{1}{9} c1=98,c2=32,c3=91

所以通解为 f ( n ) = 8 9 ⋅ 1 n − 2 3 n ⋅ 1 n + 1 9 ⋅ ( − 2 ) n = 8 9 − 2 3 n + 1 9 ⋅ ( − 2 ) n f(n)=\frac{8}{9}\cdot 1^n-\frac{2}{3}n \cdot 1^n+\frac{1}{9}\cdot (-2)^n=\frac{8}{9}-\frac{2}{3}n+\frac{1}{9}\cdot (-2)^n f(n)=981n32n1n+91(2)n=9832n+91(2)n

3. 常系数非齐次递推关系的求解

f ( n ) = c 1 ( n ) f ( n − 1 ) + c 2 ( n ) f ( n − 2 ) + . . . + c k ( n ) f ( n − k ) + g ( n ) f(n)=c_1(n)f(n-1)+c_2(n)f(n-2)+...+c_k(n)f(n-k)+g(n) f(n)=c1(n)f(n1)+c2(n)f(n2)+...+ck(n)f(nk)+g(n)对应的齐次递推关系为 f ( n ) = c 1 ( n ) f ( n − 1 ) + c 2 ( n ) f ( n − 2 ) + . . . + c k ( n ) f ( n − k ) f(n)=c_1(n)f(n-1)+c_2(n)f(n-2)+...+c_k(n)f(n-k) f(n)=c1(n)f(n1)+c2(n)f(n2)+...+ck(n)f(nk)

定理 3.1:k 阶常系数线性非齐次递推关系的通解是递推关系的特解加上其相应的齐次递推关系的通解。即非齐次递推关系的解 = 特解 + 齐次方程通解

在这里插入图片描述

习题6、 求解递推关系 { f ( n ) = 4 f ( n − 1 ) − 3 f ( n − 2 ) + 3 n ( n ≥ 2 ) f ( 0 ) = 1 , f ( 1 ) = 2 \left\{\begin{matrix} f(n)=4f(n-1)-3f(n-2)+3^n\quad (n\ge2)\\ f(0)=1,f(1)=2 \end{matrix}\right. {f(n)=4f(n1)3f(n2)+3n(n2)f(0)=1,f(1)=2

解: 先求这个递推关系的通解。其特征方程为 x 2 − 4 x + 3 = 0 x^2-4x+3=0 x24x+3=0,解这个方程得 x 1 = 1 , x 2 = 3 x_1=1,x_2=3 x1=1,x2=3因为3是特征方程的一重根,所以该递推关系的非齐次特解为 a n 3 n an3^n an3n。将其代入递推关系,得 a n 3 n = 4 a ( n − 1 ) 3 n − 1 − 3 a ( n − 2 ) 3 n − 2 + 3 n an3^n=4a(n-1)3^{n-1}-3a(n-2)3^{n-2}+3^n an3n=4a(n1)3n13a(n2)3n2+3n化简得 a = 3 2 a=\frac{3}{2} a=23,特解为 f ′ ( n ) = 3 2 n 3 n f'(n)=\frac{3}{2}n3^n f(n)=23n3n

而相应齐次递推关系的通解为 f ′ ′ ( n ) = c 1 ⋅ 1 n + c 2 n ⋅ 3 n f''(n)=c_1\cdot 1^n+c_2n \cdot 3^n f′′(n)=c11n+c2n3n

通解为 f ( n ) = f ′ ( n ) + f ′ ′ ( n ) = c 1 + c 2 ⋅ 3 n + 3 2 n 3 n f(n)=f'(n)+f''(n)=c_1+c_2\cdot 3^n+\frac{3}{2}n3^n f(n)=f(n)+f′′(n)=c1+c23n+23n3n带入初值确定 c 1 , c 2 c_1,c_2 c1,c2,得 { c 1 + c 2 = 1 c 1 + 3 c 2 + 9 2 = 2 \left\{\begin{matrix} c_1+c_2=1\\ c_1+3c_2+\frac{9}{2}=2 \end{matrix}\right. {c1+c2=1c1+3c2+29=2

c 1 = 11 4 , c 2 = − 7 4 c_1=\frac{11}{4} ,c_2=-\frac{7}{4} c1=411,c2=47

所以通解为 f ( n ) = 11 4 − 7 4 ⋅ 3 n + 3 2 n 3 n f(n)=\frac{11}{4}-\frac{7}{4}\cdot3^n+\frac{3}{2}n3^n f(n)=411473n+23n3n

习题7、 求解递推关系 { f ( n ) = f ( n − 1 ) + n 2 f ( 1 ) = 1 , f ( 2 ) = 5 , f ( 3 ) = 14 \left\{\begin{matrix} f(n)=f(n-1)+n^2\\ f(1)=1,f(2)=5,f(3)=14 \end{matrix}\right. {f(n)=f(n1)+n2f(1)=1,f(2)=5,f(3)=14

解: 先求这个递推关系的通解。其特征方程为 x − 1 = 0 x-1=0 x1=0,解这个方程得 x = 1 x=1 x=1因为1是特征方程的一重根,所以该递推关系的非齐次特解为 n 1 ( b 2 n 2 + b 1 n 1 + b 0 ) n^1(b_2n^2+b_1n^1+b_0) n1(b2n2+b1n1+b0)。将其代入递推关系,得 n 1 ( b 2 n 2 + b 1 n 1 + b 0 ) = ( n − 1 ) ( b 2 ( n − 1 ) 2 + b 1 ( n − 1 ) + b 0 ) + n 2 n^1(b_2n^2+b_1n^1+b_0)=(n-1)(b_2(n-1)^2+b_1(n-1)+b_0)+n^2 n1(b2n2+b1n1+b0)=(n1)(b2(n1)2+b1(n1)+b0)+n2比较系数可得 { b 1 = − 3 b 2 + b 1 + 1 b 0 = 3 b 2 − 2 b 1 + b 0 0 = − b 2 + b 1 − b 0 \left\{\begin{matrix} b_1=-3b_2+b_1+1\\ b_0=3b_2-2b_1+b_0\\ 0=-b_2+b_1-b_0 \end{matrix}\right. b1=3b2+b1+1b0=3b22b1+b00=b2+b1b0,解得 { b 0 = 1 / 6 b 1 = 1 / 2 b 2 = 1 / 3 \left\{\begin{matrix} b_0=1/6\\ b_1=1/2\\ b_2=1/3 \end{matrix}\right. b0=1/6b1=1/2b2=1/3 特解为 f ′ ( n ) = n ( 1 3 n 2 + 1 2 n + 1 6 ) f'(n)=n(\frac{1}{3}n^2+\frac{1}{2}n+\frac{1}{6}) f(n)=n(31n2+21n+61)而相应齐次递推关系的通解为 f ′ ′ ( n ) = c 1 ⋅ 1 n f''(n)=c_1\cdot 1^n f′′(n)=c11n

通解为 f ( n ) = f ′ ( n ) + f ′ ′ ( n ) = c 1 ⋅ 1 n + n ( 1 3 n 2 + 1 2 n + 1 6 ) f(n)=f'(n)+f''(n)=c_1\cdot 1^n+n(\frac{1}{3}n^2+\frac{1}{2}n+\frac{1}{6}) f(n)=f(n)+f′′(n)=c11n+n(31n2+21n+61)带入初值确定 c 1 c_1 c1,得 c 1 + 1 ⋅ ( 1 3 + 1 2 + 1 6 ) = 1 c_1+1\cdot(\frac{1}{3}+\frac{1}{2}+\frac{1}{6})=1 c1+1(31+21+61)=1

c 1 = 0 c_1=0 c1=0

所以通解为 f ( n ) = n ( 1 3 n 2 + 1 2 n + 1 6 ) = 1 6 n ( n + 1 ) ( 2 n + 1 ) f(n)=n(\frac{1}{3}n^2+\frac{1}{2}n+\frac{1}{6})=\frac{1}{6}n(n+1)(2n+1) f(n)=n(31n2+21n+61)=61n(n+1)(2n+1)

4. 迭代法

但对于某些非线性的递推关系,不存在求解的公式,因此不能用上述方法。
碰到此类问题,不妨尝试用迭代归纳法来求解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/215092.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java--LocalDate、LocalTime、LocalDateTime、ZoneId、Instant

1.为什么要学习JDK8新增的时间 LocalDate&#xff1a;代表本地日期(年、月、日、星期) LocalTime&#xff1a;代表本地时间(时、分、秒、纳秒) LocalDateTime&#xff1a;代表本地日期、时间(年、月、日、星期、时、分、秒、纳秒) 它们获取对象的方案 2.LocalDate的常用API(…

我的 CSDN 三周年创作纪念日:2020-12-12

本人大叔一枚&#xff0c;自1992年接触电脑&#xff0c;持续了30年的业余电脑发烧爱好者&#xff0c;2022年CSDN博客之星Top58&#xff0c;阿里云社区“乘风者计划”专家博主。自某不知名财校毕业后进入国有大行工作至今&#xff0c;先后任职于某分行信息科技部、电子银行部、金…

UG NX二次开发(C#)-求曲线在某一点处的法矢和切矢

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 1、前言2、在UG NX中创建一个曲线3、直接放代码4、测试案例1、前言 最近确实有点忙了,好久没更新博客了。今天恰好有时间,就更新下,还请家人们见谅。 今天我们讲一下如何获取一条曲线上某一条曲…

仅 CSS 阅读进度条

为了构建一个阅读进度条&#xff0c;即显示用户向下滚动时阅读文章的进度&#xff0c;很难不考虑 JavaScript。但是&#xff0c;事实证明&#xff0c;您也可以使用纯 CSS 构建阅读进度条。 从本质上讲&#xff0c;一个名为 animation-timeline 的新实验性 CSS 属性可以让你指定…

oracle 下载java之前版本

登录oracle官网&#xff1a;Oracle | Cloud Applications and Cloud Platform 点击resource 进入该页面 点击这个 出现之前版本

linux交换分区管理SWAP

概念查看当前的交换分区&#xff1a;free 6.2.5 交换分区管理SWAP 6.2.5.1 概念 作用&#xff1a; ”提升“内存容量&#xff0c;防止OOM&#xff08;out of memory&#xff0c;内存溢出&#xff09;。 ​ 对应windows中的虚拟内存。 ​ 从功能上讲&#xff0c;交换分区主要是…

Axure官方软件安装、汉化保姆级教程(带官方资源下载)

1.下载汉化包 百度云链接&#xff1a;https://pan.baidu.com/s/1lluobjjBZvitASMt8e0A_w?pwdjqxn 提取码&#xff1a; jqxn 2.解压压缩包 3.安装Axure 进行安装 点击next 打勾&#xff0c;然后next, 默认是c盘&#xff0c;修改成自己的文件夹&#xff08;不要什么都放c盘里…

Uber Go 语言编码规范

uber-go/guide 的中文翻译 English 文档链接 Uber Go 语言编码规范 Uber 是一家美国硅谷的科技公司&#xff0c;也是 Go 语言的早期 adopter。其开源了很多 golang 项目&#xff0c;诸如被 Gopher 圈熟知的 zap、jaeger 等。2018 年年末 Uber 将内部的 Go 风格规范 开源到 G…

FastAPI请求体-多个参数

路径参数、查询参数&#xff0c;和请求体混合 首先&#xff0c;我们需要导入所需的库。我们将使用FastAPI、Path和Annotated来处理路由和参数&#xff0c;并使用BaseModel和Union来自定义数据模型。 完整示例代码 from typing import Annotated, Unionfrom fastapi import F…

【lesson11】数据类型之string类型

文章目录 数据类型分类string类型set类型测试 enum类型测试 string类型的内容查找找所有女生&#xff08;enum中&#xff09;找爱好有游泳的人&#xff08;set中&#xff09;找到爱好中有足球和篮球的人 数据类型分类 string类型 set类型 说明&#xff1a; set&#xff1a;集…

C# 任务的异常和延续处理

写在前面 当Task在执行过程中出现异常或被取消等例外的情况时&#xff0c;为了让执行流程能够继续进行&#xff0c;可以使用延续方法实现这种链式处理&#xff1b;还可以针对前置任务不同的执行结果&#xff0c;选择执行不同的延续分支方法。子任务执行过程中的任何异常都会被…

排程系统中关于任务优先级的需求延伸与设计构思

无论是面向销售订单的MPS&#xff0c;还是基于多工序制约关系的APS&#xff0c;还是具体车间生产中针对单一工序的任务作业调度优化&#xff0c;都存在基于被排程对象(例如销售订单、生产工单、工序任务)的优先级进行优化的需求场景。当我们仅在宏观、较高层次的角度考虑&#…

漏洞复现--速达进存销管理系统任意文件上传

免责声明&#xff1a; 文章中涉及的漏洞均已修复&#xff0c;敏感信息均已做打码处理&#xff0c;文章仅做经验分享用途&#xff0c;切勿当真&#xff0c;未授权的攻击属于非法行为&#xff01;文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直…

【深度学习】Stable Diffusion中的Hires. fix是什么?Hires. fix原理

文章目录 **Hires. fix****Extra noise**UpscalersHires. fix原理 Hires. fix https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#hires-fix 提供了一个方便的选项&#xff0c;可以部分地以较低分辨率呈现图像&#xff0c;然后将其放大&#xff0c;最后…

Django系列之Celery异步框架+RabbitMQ使用

在Django项目中&#xff0c;如何集成使用Celery框架来完成一些异步任务以及定时任务呢&#xff1f; 1. 安装 pip install celery # celery框架 pip install django-celery-beat # celery定时任务使用 pip install django-celery-results # celery存储结果使用2. Django集成…

关于对向量检索研究的一些学习资料整理

官方学习资料 主要是的学习资料是&#xff0c; 官方文档 和官方博客。相关文章还是挺多 挺不错的 他们更新也比较及时。有最新的东西 都会更新出来。es scdn官方博客 这里简单列一些&#xff0c;还有一些其他的&#xff0c;大家自己感兴趣去看。 什么是向量数据库 Elasticse…

Windows下通过注册表实现开机自启动(测试)

注册表路径&#xff1a; 计算机\HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run 测试结果&#xff1a; QQ&#xff0c;录屏工具&#xff0c;网易有道词典等都可开机自启动。 而如果应用程序必须要管理员权限才能启动&#xff0c;那么&#xff0c;即使添入…

基于Solr的全文检索系统的实现与应用

文章目录 一、概念1、什么是Solr2、与Lucene的比较区别1&#xff09;Lucene2&#xff09;Solr 二、Solr的安装与配置1、Solr的下载2、Solr的文件夹结构3、运行环境4、Solr整合tomcat1&#xff09;Solr Home与SolrCore2&#xff09;整合步骤 5、Solr管理后台1&#xff09;Dashbo…

PairLIE论文阅读笔记

PairLIE论文阅读笔记 论文为2023CVPR的Learning a Simple Low-light Image Enhancer from Paired Low-light Instances.论文链接如下&#xff1a; openaccess.thecvf.com/content/CVPR2023/papers/Fu_Learning_a_Simple_Low-Light_Image_Enhancer_From_Paired_Low-Light_Instan…

Linux升级nginx版本

处于漏洞修复目的服务器所用nginx是1.16.0版本扫出来存在安全隐患&#xff0c;需要我们升级到1.17.7以上。 一般nginx默认在 /usr/local/ 目录&#xff0c;这里我的nginx是自定义的路径安装在 /app/weblogic/nginx 。 1.查看生产环境nginx版本 cd /app/weblogic/nginx/sbin/…