基于大语言模型的复杂任务认知推理算法CogTree

近日,阿里云人工智能平台PAI与华东师范大学张伟教授团队合作在自然语言处理顶级会议EMNLP2023上发表了基于认知理论所衍生的CogTree认知树生成式语言模型。通过两个系统:直觉系统和反思系统来模仿人类产生认知的过程。直觉系统负责产生原始问题的多个分解假设,反思系统对直觉系统产生的假设进行验证,并选择更有可能的假设进行后续生成,直到达到最终结果。通过上述双系统的迭代式生成,可以提升大模型的解题准确度。

论文:

Junbing Yan, Chengyu Wang, Taolin Zhang, Xiaofeng He, Jun Huang, Wei Zhang. From Complex to Simple: Unraveling the Cognitive Tree for Reasoning with Small Language Models. EMNLP 2023 (Findings)

背景

随着深度学习在自然语言处理、机器翻译等任务上的不断发展,人们对如何将深度学习应用到自然语言处理中越来越感兴趣,由此出现了大语言模型(例如GPT-3.5),并已在文本生成、情感分析、对话系统等多个任务上取得了重大突破。大语言模型通常基于大规模文本数据进行预训练,然后通过微调在特定任务上进行优化,以生成高质量的文本输出。然而,对于语言模型而言,复杂的逻辑推理问题和数学问题的求解仍然是很困难的。并且,传统的语言模型缺乏认知能力。在处理涉及冗长的推理链或多步解决方案的问题时,对于问题及其当前回答的评估是很重要的。然而,目前的方法例如Chain-of-thought等通常缺乏对于中间过程的验证。并且大型语言模型的部署和推理成本相对较高,特别是在利用无参数更新的推理增强技术时。这些技术需要大量的上下文和多步的答案生成,进一步增加了推理成本和时间。

因此,本文研究面向轻量化大模型的复杂任务推理,使用较小规模的模型(7B),构建双系统生成推理树,大大增强模型在复杂数学问题和逻辑推理问题上的回答能力。提出了一种大模型面向复杂数学问题的求解方法。该方法基于人类的认知理论,通过两个系统:直觉系统和反思系统来模仿人类产生认知的过程。直觉系统负责产生原始问题的多个分解假设,反思系统对直觉系统产生的假设进行验证,并选择更有可能的假设进行后续生成,直到达到最终结果。通过上述双系统的迭代式生成,可以提升大模型的解题准确度。

算法概述

为了解决上述大模型对复杂任务推理准确度不高且推理成本大的问题,CogTree采用双系统的方式,用大模型分别构建两个系统:直觉系统和反思系统,使用直觉系统生成原问题分解的假设,使用反思系统验证假设的正确性,引导直觉系统后续的生成。模型框架图如下所示:

通过双系统迭代式的生成一棵推理树,增强大模型的推理能力。本方法的创新性是面向大语言模型,设计了一套新的推理框架,增强大模型在复杂数学问题上的推理能力。

直觉系统

直觉系统的生成能力是构建认知树的基础。因此,选择仅包decoder-only的模型(例如,GPT2-XL或LLaMA-7B)作为直觉系统。通过上下文方法来增强直觉系统的能力。定义查询Q为逻辑推理问题的最终目标或数学问题。在逻辑推理问题的情况下,分解D涉及将目标进一步分解为较小问题,通过对这些分解进行推理,可以实现最终目标。对于数学问题,它指的是从原始问题中导出的子问题之一,解决这个子问题有助于解决整个原始问题。分解集合表示训练集中所有示例的分解集合。从推理分解集合中检索k个示例(例如,查询:Q;分解:询:D),然后将它们用作模型输入的上下文。输出可以生成为y∼fθ​(y∣x,z1…k​)。这里,z代表从分解集合Z中检索到的k个示例,其中Z=\{z_1,\cdots, z_L\}。使用直觉系统获取当前查询的表示,并计算与集合中其他查询的表示的余弦相似度。然后,我们从集合中检索出最相似的k个查询。其中[y] \sim f_\theta(y | x, z_{1 \cdots K})是一个连续语言序列。

反思系统

反思系统在作用上与直觉系统不同。直觉系统依赖于快速直觉进行生成,而反思系统的作用是评估直觉系统的生成结果以确定其可接受性。反思系统通过采用两种方法来验证结果:中间过程的验证和整个推理链的验证。给定当前状态s(查询:Q与分解:D),使用与直觉系统相同的模型架构的反思系统来生成一个验证当前状态的分数v。这可以表示为V(f_\theta,s) \sim f_\theta(v | s)。此外,基于完整的推理链S=\{s_1,\cdots, s_i,\cdots, s_n\}。使用反思系统来产生一个整体分数o,可以表示为O(f_\theta,S) \sim f_\theta(o | S)。反思系统与直觉系统不同,其主要任务是评估和验证当前状态和整个推理链的可行性,而不是像直觉系统那样产生快速假设。这种评估过程有助于确保生成的假设和推理过程是合理的。

训练

直觉系统

Supervised Fine-tuning (SFT)已经证明了其在对其人类意图上的有效性。在我们的方法中,直觉系统通过利用上下文示例将查询 Q(即复杂问题)分解为子问题。由于我们使用生成模型作为直觉系统,因此在自回归计算期间,仅对生成的文本(不包括给定的上下文)进行损失计算。给定一个长度为N的样本,表示为X,其中X=\{x_1,\cdots, x_i,\cdots, x_n\}

。我们定义上下文示例的序列长度为M。 我们使用标准的语言建模目标来最大化以下似然函数:\mathcal{L}_{\mathcal{IS}}=\sum_{i>M}^N log \ P(x_i | x_1, \cdots, x_{i-1}; \theta)

反思系统

反思系统采取与直觉系统相同的训练方法,利用正负样本让模型从中生成分类结果。由于反思系统主要关注状态s的判断,损失函数可以定义如下 :\mathcal{L}_{\mathcal{RS}} = \log P(v | s; \theta) 。

算法精度评测

为了验证CogTree算法的有效性,我们在Entailment Bank逻辑推理数据集以及GSM8K数学问题数据集上进行了测试,效果证明CogTree对大模型复杂任务上的回答准确率提升明显:

我们也将算法与其他基于大模型微调的方法进行对比,证明了CogTree框架的有效性。

为了更好地服务开源社区,CogTree算法的源代码即将贡献在自然语言处理算法框架EasyNLP中,欢迎NLP从业人员和研究者使用。

EasyNLP开源框架:GitHub - alibaba/EasyNLP: EasyNLP: A Comprehensive and Easy-to-use NLP Toolkit

参考文献

  • Chengyu Wang, Minghui Qiu, Taolin Zhang, Tingting Liu, Lei Li, Jianing Wang, Ming Wang, Jun Huang, Wei Lin. EasyNLP: A Comprehensive and Easy-to-use Toolkit for Natural Language Processing. EMNLP 2022
  • Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. 2021a. Training verifiers to solve math word problems. CoRR, abs/2110.14168
  • Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Olivier Bousquet, Quoc Le, and Ed H. Chi. 2022. Least-to-most prompting enables complex reasoning in large language models. CoRR, abs/2205.10625
  • Jonathan St B. T. Evans. 1984. Heuristic and analytic processes in reasoning. British Journal of Psychology, 75(4):451–468

论文信息

论文标题:From Complex to Simple: Unraveling the Cognitive Tree for Reasoning with Small Language Models
论文作者:严俊冰、汪诚愚、张涛林、何晓丰、黄俊、张伟
论文pdf链接:https://arxiv.org/abs/2311.06754

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/215351.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Springboot入门篇

一、概述 Spring是一个开源框架,2003 年兴起的一个轻量级的Java 开发框架,作者Rod Johnson 。Spring是为了解决企业级应用开发的复杂性而创建的,简化开发。 1.1对比 对比一下 Spring 程序和 SpringBoot 程序。如下图 坐标 Spring 程序中的…

【Hadoop_04】HDFS的API操作与读写流程

1、HDFS的API操作1.1 客户端环境准备1.2 API创建文件夹1.3 API上传1.4 API参数的优先级1.5 API文件夹下载1.6 API文件删除1.7 API文件更名和移动1.8 API文件详情和查看1.9 API文件和文件夹判断 2、HDFS的读写流程(面试重点)2.1 HDFS写数据流程2.2 网络拓…

软件设计师——软件工程(一)

📑前言 本文主要是【软件工程】——软件设计师——软件工程的文章,如果有什么需要改进的地方还请大佬指出⛺️ 🎬作者简介:大家好,我是听风与他🥇 ☁️博客首页:CSDN主页听风与他 &#x1f304…

phpstorm中使用 phpunit 时的配置和代码覆盖率测试注意点

初始化一个composer项目,composer.json配置文件如下 {"name": "zingfront/questions-php","type": "project","require": {"php": "^7.4"},"require-dev": {"phpunit/phpun…

Mac安装DevEco Studio

下载 首先进入鸿蒙开发者官网,顶部导航栏选择开发->DevEco Studio 根据操作系统下载不同版本,其中Mac(X86)为英特尔芯片,Mac(ARM)为M芯片。 安装 下载完毕后,开始安装。 点击Agree 首次使用,请选择Do not impor…

张驰咨询:数据驱动的质量改进,六西格玛绿带在汽车业实践

尊敬的汽车行业同仁们,您是否曾面临生产效率低下、成本不断攀升或顾客满意度下降的困扰?本期专栏,我们将深入探讨如何通过六西格玛绿带培训,在汽车行业中实现过程优化和质量提升。 汽车行业的竞争日趋激烈,致力于提供…

Flask维护者:李辉

Flask维护者:李辉, 最近看b站的flask相关,发现了这个视频:[PyCon China 2023] 濒危 Flask 扩展拯救计划 - 李辉_哔哩哔哩_bilibili 李辉讲他在维护flask之余,开发了apiflask这个依托flask的框架。GitHub - apiflask/a…

融合科技,升级医疗体验——医院陪诊服务的技术创新

随着科技的迅猛发展,医疗服务领域也在积极借助技术手段提升患者体验。本文将探讨如何利用先进的技术代码,将医院陪诊服务推向新的高度。 1. 医疗预约系统的实现 # 通过Python代码实现医疗预约系统 class MedicalAppointment:def __init__(self, patie…

基于轻量级神经网络GhostNet开发构建光伏太阳能电池缺陷图像识别分析系统

工作中经常会使用到轻量级的网络模型来进行开发,所以平时也会常常留意使用和记录,在前面的博文中有过很多相关的实践工作,感兴趣的话可以自行移步阅读即可。 《移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobil…

python的websocket方法教程

WebSocket是一种网络通信协议,它在单个TCP连接上提供全双工的通信信道。在本篇文章中,我们将探讨如何在Python中使用WebSocket实现实时通信。 websockets是Python中最常用的网络库之一,也是websocket协议的Python实现。它不仅作为基础组件在…

NSSCTF web刷题记录7

文章目录 [SDCTF 2022]CURL Up and Read[NUSTCTF 2022 新生赛]Translate [SDCTF 2022]CURL Up and Read 考点:SSRF 打开题目发现是curl命令,提示填入url 尝试http://www.baidu.com,成功跳转 将url的字符串拿去解码,得到json格式数…

低功耗模式的通用 MCU ACM32F0X0 系列,具有高整合度、高抗干扰、 高可靠性的特点

ACM32F0X0 系列是一款支持多种低功耗模式的通用 MCU。集成 12 位 1.6 Msps 高精度 ADC 以及比 较器、运放、触控按键控制器、段式 LCD 控制器,内置高性能定时器、多路 UART、LPUART、SPI、I2C 等丰富的通讯外设,内建 AES、TRNG 等信息安全模块&#xff0…

云降水物理基础

云降水物理基础 云的分类 相对湿度变化方程 由相对湿度的定义,两边取对数之后可以推出 联立克劳修斯-克拉佩龙方程(L和R都为常数) 由右式看出,增加相对湿度的方式:增加水汽(de增大)和降低…

基于node 安装express后端脚手架

1.首先创建文件件 2.在文件夹内打开终端 npm init 3.安装express: npm install -g express-generator注意的地方:这个时候安装特别慢,最后导致不成功 解决方法:npm config set registry http://registry.npm.taobao.org/ 4.依次执行 npm install -g ex…

【基础知识】大数据概述

关键词—分布式 化整为零,再化零为整 大数据的定义 传统数据库处理起来困难的数据集。 发展历程 中国开源生态图谱2023 参考内容 中国开源生态图谱 2023.pdf 技术组件说明 数据集成 sqoop、dataX、flume 数据存储 hdfs、kafka 数据处理 mapreduce、hive…

用PHP和HTML做登录注册操作数据库Mysql

用PHP和HTML做登录注册操作数据库Mysql 两个HTML页面&#xff0c;两个PHP,两个css,两张图片&#xff0c;源码资源在上方。 目录 HTML页面 login.html <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta nam…

AtCoder ABC周赛2023 11/4 (Sat) E题题解

目录 原题截图&#xff1a; 原题翻译 题目大意&#xff1a; 主要思路&#xff1a; 代码&#xff1a; 原题截图&#xff1a; 原题翻译 题目大意&#xff1a; 给你一个数组&#xff0c;给你一个公式&#xff0c;让你选k个元素&#xff0c;用公式算出最终得分。 主要思路&am…

PyQt6 表单布局Form Layout (QFormLayout)

锋哥原创的PyQt6视频教程&#xff1a; 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计43条视频&#xff0c;包括&#xff1a;2024版 PyQt6 Python桌面开发 视频教程(无废话版…

嵌入式系统复习--概述

文章目录 基本概念嵌入式系统的组成结构嵌入式操作系统嵌入式软件开发环境硬件基础简介下一篇 基本概念 嵌入式计算机&#xff1a;把嵌入到对象体系中、实现对象体系智能化控制的带有微控制器的计算机&#xff0c;称作嵌入式计算机 嵌入式系统&#xff1a;以应用为中心&#…

STM32-01-认识单片机

文章目录 一、单片机简介二、Cortex-M系列介绍三、初识STM32四、STM32原理图设计五、搭建开发环境六、STM32初体验七、MDK5使用技巧 一、单片机简介 单片机是什么&#xff1f; 单片机&#xff1a;Single-Chip Microcomputer&#xff0c;单片微型计算机&#xff0c;是一种集成电…