论文笔记:A review on multi-label learning

一、介绍

传统的监督学习是单标签学习,但是现实中一个实例可能对应多个标签。这篇文章介绍了多标签分类的定义和评价指标、多标签学习的算法还有其他相关的任务。

二、问题相关定义

2.1 多标签学习任务

假设 X = R d X = R^d X=Rd,表示d维的输入空间, Y = ( y 1 , y 2 , y 3 . , . . . , y q Y = (y_1, y_2, y_3., ..., y_q Y=(y1,y2,y3.,...,yq表示输出的可能q个类别。多标签任务是学习一个方程,在训练集合 D = { ( x i , Y i ) ∣ 1 ≤ i ≤ m } D = \{(x_i, Y_i)|1 \leq i \leq m\} D={(xi,Yi)∣1im}学习一个X到Y的函数。对于每个多标签实例, x i ∈ X x_i \in X xiX是d维特征空间 ( x i 1 , x i 2 , . . . , x i d ) T (x_{i1}, x_{i2}, ..., x_{id})^T (xi1,xi2,...,xid)T Y i ⊆ Y Y_i \subseteq Y YiY是对应于 x x x的标签几何。多标签学习任务就是学习一个多标签分类器 h ( . ) h(.) h(.),对于没有见到过的实例 x ∈ X x \in X xX,可以预测他的标签 h ( x ) ⊆ Y h(x) \subseteq Y h(x)Y

2.2 多标签学习的特点
2.2.1. 不同数据集多标签的程度可能不同

有几个有用的多标签指示符可以用于描述多标签数据集的特性。

  • 最自然的方法就是衡量多标签程度的是label cardinality(标签基数):
    L C a r d ( D ) = 1 m ∑ i = 1 m ∣ Y i ∣ LCard(D) = \frac{1}{m}\sum_{i=1}^m|Y_i| LCard(D)=m1i=1mYi
    表示每个样本的平均标签数目。
  • “标签密度”(label density)按标签空间中可能的标签数规范化标签基数:
    L D e n ( D ) = 1 y ⋅ L C a r d ( D ) LDen(D) = \frac{1}{y} \cdot LCard(D) LDen(D)=y1LCard(D)
  • 标签多样性:Label diversity
    L D i v ( D ) = ∣ Y ∣ e x i s t s x : ( x , Y ) ∈ D ∣ LDiv(D) = |{Y|exists x:(x,Y)\in D}| LDiv(D)=Yexistsx:(x,Y)D
    数据集中出现的不同标签集的数目
  • 标签多样性可以通过数据集的数量来标准化,以表示不同标签集的比例
    P L D i v ( D ) = 1 D ⋅ L D i v ( D ) PLDiv(D)=\frac{1}{D}\cdot LDiv(D) PLDiv(D)=D1LDiv(D)
    多标签学习就是学习x和y的相关性,希望 f ( x , y ′ ) ≥ f ( x , y ′ ′ ) f(x, y^{'}) \ge f(x, y^{''}) f(x,y)f(x,y′′),其中 y ′ ∈ Y y' \in Y yY, y ′ ′ ∉ Y y^{''}\notin Y y′′/Y。所以多标签分类器可以通过函数f(.,.)得到: h ( x ) = { y ∣ f ( x , y ) ≥ t ( x ) , y ∈ Y } h(x) = \{y | f(x,y) \ge t(x), y\in Y\} h(x)={yf(x,y)t(x),yY},其中 t ( x ) t(x) t(x),扮演阈值函数的角色,把标签空间对分成相关的标签集和不相关的标签集。阈值函数可以由训练集产生,可以设为常数。
2.2.2. 标签具有相互关系

学习策略
多标签学习的主要难点在于输出空间的爆炸增长,有效的挖掘标签之间的相关性,是多标签学习成功的关键。根据对相关性挖掘的强弱,可以把多标签算法分为三类。

  1. 一阶学习策略:忽略和其它标签的相关性,比如把多标签分解成多个独立的二分类问题(简单高效)。
  2. 二阶学习策略:考虑标签之间的成对关联,比如为相关标签和不相关标签排序。
  3. 高阶学习策略:考虑多个标签之间的关联,比如对每个标签考虑所有其它标签的影响(效果最优)。
2.2.3 数据不平衡

一. 某个类别对应样例可能远多于另一个类别,类别之间不平衡
二. 某个类别对应的正样本可能远多于负样本(类别之内不平衡)

2.3 阈值校准

多标签学习中的一种常见做法是返回一些实值函数 f ( ⋅ , ⋅ ) f(·,·) f作为学习模型。为了决定最后的输出结果,每个标签上的实值输出应根据阈值函数输出 t ( x ) t(x) t(x)进行校准。
通常有两种方法设置 t ( ∗ ) t(*) t(),设置 t ( ∗ ) t(*) t()为常量或者从训练数据中预测。对于前者, f f f是一个实值函数,所以t可设置为0。当 f f f的输出为概率时, t t t设置为0.5。或者当测试集可见时,阈值可以设置为训练集合测试集的多标签程度指标区别最小的数。
对于后一个策略,可以用stacking-style的步骤来决定阈值函数。假设 t t t是一个线性模型,即 t ( x ) = < w , f ( x ) > + b t(x) = <w, f(x)> + b t(x)=<w,f(x)>+b,这里 f ( x ) = ( f ( x , y 1 ) , . . . , f ( x , y q ) ) T ∈ R q f(x) = (f(x, y1),...,f(x,y_q))^T \in R^q f(x)=(f(x,y1),...,f(x,yq))TRq是一个 q q q维stacking向量。为了学习 w ∗ w^* w b ∗ b^* b,需要求解线性最小二乘。
m i n w ∗ , b ∗ ∑ i − 1 m ( < w ∗ , f ∗ ( x i ) > + b ∗ − s ( x i ) ) 2 min_{w^*,b^*}\sum_{i-1}^m(<w^*,f^*(x_i)> + b^* - s(x_i))^2 minw,bi1m(<w,f(xi)>+bs(xi))2
s ( x i ) = a r g m i n a ∈ R ( ∣ { y j ∣ y j ∈ Y i , f ( x i , y j ) ≤ a } ∣ + ∣ { y k ∣ y k ∈ Y ^ i , f ( x i , y k ) ≥ a } ∣ ) s(x_i)=argmin_{a\in R}(|\{y_j | y_j \in Y_i, f(x_i, y_j) \leq a\}|+|\{y_k|y_k \in \hat Y_i, f(x_i, y_k) \geq a\}|) s(xi)=argminaR({yjyjYi,f(xi,yj)a}+{ykykY^i,f(xi,yk)a})表示模型的输出目标,对每个样本,它以最小误差将 Y Y Y划分为相关和不相关。

2.4 评价指标

2.4.1 分类评价指标
  1. Examples-based metrics 基于样本评价指标
    通过分别评估学习系统在每个测试示例上的性能,然后返回整个测试集的平均值
  2. Label-based metrics 基于标签评价指标
    通过分别评估每个类标签上的学习系统性能,然后返回所有类标签上的宏/微观平均值
2.4.2 排序评价指标

在这里插入图片描述
下面对每个指标进行介绍
基于样本的评价指标

  1. Subset Accuracy(衡量正确率,预测的样本集和真实的样本集完全一样就是正确)
    s u b s e t a c c ( h ) = 1 p ∑ i = 1 p [ h ( x i ) = Y i ] subsetacc(h) = \frac{1}{p} \sum_{i=1}^p[h(x_i) = Y_i] subsetacc(h)=p1i=1p[h(xi)=Yi]
  2. Hamming Loss(衡量的是错分的标签比例,正确标签没有被预测以及错误标签被预测的标签占比)
    h l o s s ( h ) = 1 p ∑ i = 1 p ∣ h ( x i ) Δ Y i ∣ hloss(h) = \frac{1}{p}\sum_{i=1}^p|h(x_i)\Delta Y_i| hloss(h)=p1i=1ph(xi)ΔYi
    Δ \Delta Δ表示两个集合的对称差,返回只在其中一个集合出现的那些值。
  3. Accuracy, Precision, Recall, F值(单标签学习中准确率,精准率,召回率,F值)
    A c c u r a c y ( h ) = 1 p ∑ i = 1 p ∣ h ( x i ) ∩ y i ∣ ∣ h ( x i ) ∪ y i ∣ Accuracy(h)=\frac{1}{p}∑_{i=1}^p\frac{∣h(x_i)∩y_i∣}{|h(x_i)∪y_i|} Accuracy(h)=p1i=1ph(xi)yih(xi)yi
    P r e c i s i o n ( h ) = 1 p ∑ i = 1 p Y i ∩ h ( x i ) h ( x i ) Precision(h) = \frac{1}{p}\sum_{i=1}^p\frac{Y_i \cap h(x_i)}{h(x_i)} Precision(h)=p1i=1ph(xi)Yih(xi)
    R e c a l l = 1 p ∑ i = 1 p Y i ∩ h ( x i ) Y i Recall = \frac{1}{p}\sum_{i=1}^p\frac{Y_i \cap h(x_i)}{Y_i} Recall=p1i=1pYiYih(xi)
    F = 1 + β 2 ⋅ P r e c i s i o n ( h ) ⋅ R e c a l l ( h ) β 2 ⋅ ( P r e c i s i o n ( h ) + R e c a l l ( h ) ) F = \frac{1 + \beta^2 \cdot Precision(h) \cdot Recall(h)}{\beta^2 \cdot (Precision(h) + Recall(h))} F=β2(Precision(h)+Recall(h))1+β2Precision(h)Recall(h)
  4. one-error(“预测到的最相关的标签” 不在 “真实标签”中的样本占比。值越小,表现越好)
    o n e − e r r o r ( f ) = 1 p ∑ i = 1 p [ a r g m a x y ∈ Y f ( x i , y ) ∉ Y i ] one-error(f) = \frac{1}{p}\sum_{i=1}^p[argmax_{y \in Y}f(x_i, y)\notin Y_i] oneerror(f)=p1i=1p[argmaxyYf(xi,y)/Yi]
  5. Coverage(值越小,表现越好)
    c o v e r a g e ( f ) = 1 p ∑ i p m a x y ∈ Y i r a n k f ( x i , y ) − 1 coverage(f) = \frac{1}{p}\sum_{i}^p max_{y \in Y_i } rank_{f_(x_i,y)}-1 coverage(f)=p1ipmaxyYirankf(xi,y)1
  6. Ranking loss(值越小,表现越好)
    r l o s s ( f ) = 1 p ∑ i = 1 p 1 ∣ Y i ∣ ∣ Y ^ i ∣ ∣ { ( y ′ , y ′ ′ ) ∣ f ( x i , y ′ ) ≤ f ( x i , y ′ ′ ) , ( y ′ , y ′ ′ ) ∈ Y i × Y ^ i } ∣ rloss(f) = \frac{1}{p}\sum_{i=1}^p \frac{1}{|Y_i| |\hat Y_i|} |\{(y',y^{''})|f(x_i, y') \leq f(x_i, y^{''}),(y', y^{''}) \in Y_i \times \hat Y_i \}| rloss(f)=p1i=1pYi∣∣Y^i1{(y,y′′)f(xi,y)f(xi,y′′),(y,y′′)Yi×Y^i}
  7. Average Precision(度量比特定标签更相关的那些标签的排名的占比,越大越好)
    a v g p r e c ( f ) = 1 p ∑ i = 1 p 1 ∣ Y i ∣ ∑ y ∈ Y i ∣ y ′ ∣ r a n k f ( x , y ′ ) ≤ r a n k f ( x i , y ) , y ′ ∈ Y i ∣ r a n k f ( x i , y ) avgprec(f)=\frac{1}{p}\sum_{i=1}^p\frac{1}{|Y_i|}\sum_{y \in Y_i}\frac{|{y'|rank_f(x,y') \leq rank_f(x_i,y),y'\in Y_i }|}{rank_{f(x_i,y)}} avgprec(f)=p1i=1pYi1yYirankf(xi,y)yrankf(x,y)rankf(xi,y),yYi
    基于标签的评价指标
  8. 分类评价指标
    对于每个标签,都可以得到 T P , F P , T N , F N TP, FP, TN, FN TP,FP,TN,FN
    在这里插入图片描述
    B ( T P j , F P j , T N j , F N j ) B(TP_j, FP_j, TN_j, FN_j) B(TPj,FPj,TNj,FNj)表示特定的二元分类度量 B ∈ { A c c u r a c y , P r e c i s i o n , R e c a l l , F β } B \in \{Accuracy, Precision, Recall, F^{\beta}\} B{Accuracy,Precision,Recall,Fβ},label-based的分类可以通过两种方式得到
  • Macro-averaging(宏平均,先对单个标签下的数量特征计算得到常规指标,再对多个标签取平均)
    B m a c r o ( h ) = 1 q ∑ j = 1 q B ( T P j , F P j , T N j , F N j ) B_{macro(h)} = \frac{1}{q}\sum_{j=1}^qB(TP_j,FP_j,TN_j,FN_j) Bmacro(h)=q1j=1qB(TPj,FPj,TNj,FNj)
  • Micro-averaging(微平均,对数据集中的每一个实例不分类别进行统计建立全局混淆矩阵,然后计算相应指标)
    B m i c r o ( h ) = B ( ∑ j = 1 q T P j , ∑ j = 1 q F P j , ∑ j = 1 q T N j , ∑ j = 1 q F N j ) B_{micro(h)} = B(\sum_{j=1}^q TP_j, \sum_{j=1}^q FP_j, \sum_{j=1}^q TN_j, \sum_{j=1}^q FN_j) Bmicro(h)=B(j=1qTPj,j=1qFPj,j=1qTNj,j=1qFNj)
  1. 排序评价指标 rank metric
  • AUC-macro(“排序正确”的数据对的占比,先对单个标签计算,再平均)
    A U C m a c r o = 1 q ∑ j = 1 q A U C j = 1 q ∑ i = 1 q ∣ { ( x ′ , x ′ ′ ) ∣ f ( x ′ , y j ) ≥ f ( x ′ , y j ) , ( x ′ , x ′ ′ ) ∈ Z j × Z ^ j } ∣ ∣ Z j ∣ ∣ Z ^ j ∣ AUC_{macro} = \frac{1}{q}\sum_{j=1}^q AUC_j = \frac{1}{q}\sum_{i=1}^q\frac{|\{(x', x'')|f(x',y_j) \geq f(x',y_j), (x', x'') \in Z_j \times \hat Z_j\}|}{|Z_j||\hat Z_j|} AUCmacro=q1j=1qAUCj=q1i=1qZj∣∣Z^j{(x,x′′)f(x,yj)f(x,yj),(x,x′′)Zj×Z^j}
    Z j = { x i ∣ y j ∈ Y i , 1 ≤ i ≤ p } Z_j = \{x_i|y_j \in Y_i, 1\leq i \leq p\} Zj={xiyjYi,1ip}表示的是含有 y j y_j yj标签的样本数量,
    Z ^ j = { x i ∣ y j ∉ Y i , 1 ≤ i ≤ p } \hat Z_j = \{x_i|y_j \notin Y_i, 1\leq i \leq p\} Z^j={xiyj/Yi,1ip}表示的是不含有 y j y_j yj标签的样本数量

  • AUC-micro(“排序正确”的数据对的占比,把多个标签考虑在内来计算占比)
    A U C m i c r o = 1 q ∑ j = 1 q A U C j = 1 q ∑ i = 1 q ∣ { ( x ′ , x ′ ′ , y ′ , y ′ ′ ) ∣ f ( x ′ , y ′ ) ≥ f ( x ′ ′ , y ′ ′ ) , ( x ′ , y ′ ) ∈ S + , ( x ′ ′ , y ′ ′ ) ∈ S − } ∣ ∣ S + ∣ ∣ S − ∣ AUC_{micro} = \frac{1}{q}\sum_{j=1}^q AUC_j = \frac{1}{q}\sum_{i=1}^q\frac{|\{(x', x'', y', y'')|f(x',y') \geq f(x'',y''),(x',y')\in S^+,(x'', y'') \in S^-\}|}{|S^+||S^-|} AUCmicro=q1j=1qAUCj=q1i=1qS+∣∣S{(x,x′′,y,y′′)f(x,y)f(x′′,y′′),(x,y)S+,(x′′,y′′)S}
    S + = ( x i , y ) ∣ y ∈ Y i , 1 ≤ i ≤ p S^+ = {(x_i, y)|y\in Y_i, 1 \leq i \leq p} S+=(xi,y)yYi,1ip表示的是相关的样本标签对,
    S − = ( x i , y ) ∣ y ∉ Y i , 1 ≤ i ≤ p S^- = {(x_i, y)|y\notin Y_i, 1 \leq i \leq p} S=(xi,y)y/Yi,1ip表示的是不相关的样本标签对

三、多分类学习算法

两种学习方法:

  1. 问题转换法(让数据适应算法)
    把多标签分类转为其他成熟的场景。代表算法有一阶binary revevance和高阶方法classifier chains。他们将多标签问题转为二分类。二阶方法有calibrated label ranking。将多标签分类转为标签排序,高阶方法radom k-labelset将多标签学习转为多分类问题。
  2. 算法改编方法(让算法适应数据)
    更改学习技术来应对多标签数据。代表算法包括一阶方法ML-knn改编k近邻,一阶方法ML-DT改编决策树,二阶方法Rank-SVM改编核技巧,二阶方法CML改编information-theretic techniques。
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/215690.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C# WPF上位机开发(简易图像处理软件)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 图像处理是工业生产重要的环节。不管是定位、测量、检测还是识别&#xff0c;图像处理在工业生产中扮演重要的角色。而c#由于自身快速开发的特点&a…

Python网络爬虫环境的安装指南

网络爬虫是一种自动化的网页数据抓取技术&#xff0c;广泛用于数据挖掘、信息搜集和互联网研究等领域。Python作为一种强大的编程语言&#xff0c;拥有丰富的库支持网络爬虫的开发。本文将为你详细介绍如何在你的计算机上安装Python网络爬虫环境。 一、安装python开发环境 进…

SCUM私人服务器搭建部署教程

以下是搭建SCUM私服的步骤&#xff1a; 1. 下载并安装SteamCMD。SteamCMD是一个命令行工具&#xff0c;用于从Steam下载和更新游戏服务器。你可以从Steam官网下载并安装它。 2. 创建一个文件夹来存储服务器文件。在你的计算机上创建一个文件夹&#xff0c;用于存储SCUM服务器文…

JavaWeb(十二)

一、Filter概述 Filter 表示过滤器&#xff0c;是 JavaWeb 三大组件(Servlet、Filter、Listener)之一。 过滤器可以把对资源的请求拦截下来&#xff0c;从而实现一些特殊的功能。 如下图所示&#xff0c;浏览器可以访问服务器上的所有的资源&#xff08;servlet、jsp、html等…

【玩转TableAgent数据智能分析】TableAgent全功能详解及多领域数据分析实践(中)不同领域数据分析实践

3 电影点评数据分析实践 利用本身自带的电影点评数据&#xff0c;来具体看一下TableAgent的分析能力&#xff0c;选择电影点评数据&#xff0c;智能体会自动导入该数据DMSC20000.csv&#xff0c;大小为3.3 MB。在数据信息展示区&#xff0c;就会显示出该数据&#xff0c;并提供…

C++STL的vector模拟实现

文章目录 前言成员变量成员函数构造函数push_backpop_backinserterase析构函数拷贝构造 前言 成员变量 namespace but {template<class T>class vector{public:typedef T* iterator;private:iterator _start;iterator _finish;iterator _end_of_storage;}; }我们之前实…

网易有道强力开源中英双语语音克隆

项目地址&#xff08;基于PromptTTS&#xff09;&#xff1a; https://github.com/netease-youdao/EmotiVoice EmotiVoice Docker镜像 尝试EmotiVoice最简单的方法是运行docker镜像。你需要一台带有NVidia GPU的机器。先按照Linux和Windows WSL2平台的说明安装NVidia容器工具…

线上盲盒小程序,开启互联网盲盒时代

近年来&#xff0c;盲盒经济在国内非常火爆&#xff0c;各类盲盒品牌层出不穷&#xff0c;深受国内外年轻人、消费者的喜爱。 目前&#xff0c;根据数据显示&#xff0c;盲盒市场不仅在线下异常火热&#xff0c;线上盲盒也是成为了大众的新选择。各类电商平台中盲盒的成交额更…

使用node实现链接数据库并对数据库进行增删改查的后端接口

环境 node npm 编辑器 vscode 项目配置 新建目录 用vscode打开 终端输入 npm init -y npm install mysql npm install express 代码 安装好之后的代码页面 新建 在根目录新建api.js文件 const express require(express); const db require(./db/index); const app…

计算机考研408-计算机网络、操作系统整书知识点脑图

计算机网络、操作系统整书知识点脑图 今天突然想起来考研期间为了方便记忆&#xff0c;费了很大力气整理了计算机网络、操作系统两本书知识点的脑图&#xff0c;想着放着也没啥用&#xff0c;分享出来给大家看看 但是思维导图格式的东西好像没法直接发成文章&#xff0c;上传…

使用Windows10的OneDrive应用程序,让文件管理上一个台阶

这篇文章解释了如何通过在文件资源管理器和OneDrive应用程序之间轮换&#xff0c;将OneDrive与Windows 10一起使用。 使用文件资源管理器进行组织 你不必将所有OneDrive文件都保存在硬盘上&#xff0c;事实上&#xff0c;你可以将任意数量的文件留在云中&#xff08;也就是微…

SpringBoot-Swagger3

SpringBoot——2.7.3版本整合Swagger3-CSDN博客文章浏览阅读5.4k次&#xff0c;点赞6次&#xff0c;收藏17次。Swagger2&#xff08;基于openApi3&#xff09;已经在17年停止维护了&#xff0c;取而代之的是 sagger3&#xff08;基于openApi3&#xff09;&#xff0c;而国内几乎…

C++STL之List的实现

首先我们要实现List的STL,我们首先要学会双向带头链表的数据结构。那么第一步肯定是要构建我们的节点的数据结构。 首先要有数据域&#xff0c;前后指针域即可。 再通过模板类进行模板化。 然后再写List的构造函数&#xff0c;这个地方用T&,通过引用就可以减少一次形参拷…

机械中常用的一些术语

目录 一、OEMSOP:SOP编写指南 WI(标准作业指导书):标准作业程序 &#xff08;SOP&#xff09;:SOP和WI的区别&#xff1a;一、PFC、FMEA、PCP、WIPPAP、PSW&#xff1a;APQP&#xff1a;BOM&#xff08;Bill of Material&#xff09;物料清单DV&#xff08;设计验证&#xff09…

我的创作三周年纪念日

今天收到CSDN官方的来信&#xff0c;创作三周纪念日到了。 Dear: Hann Yang &#xff0c;有幸再次遇见你&#xff1a; 还记得 2020 年 12 月 12 日吗&#xff1f; 你撰写了第 1 篇技术博客&#xff1a; 《vba程序用7重循环来计算24》 在这平凡的一天&#xff0c;你赋予了它…

智能建筑市场调研:预计2028年将达到10736亿元

我国智能建筑起源于20世纪90年代&#xff0c;在我国发展了二十年&#xff0c;行业经历了初创期、规范期、发展期三个阶段&#xff0c;已经形成了产业规模及产业链&#xff0c;智能建筑工程已经普及到了各种类型建筑并延伸到了城市建设及相关行业。地域上&#xff0c;智能建筑由…

LeetCode(55)环形链表【链表】【简单】

目录 1.题目2.答案3.提交结果截图 链接&#xff1a; 环形链表 1.题目 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评…

100V降压5V芯片

高效能100V降压5V芯片&#xff1a;9V至100V输入电压范围&#xff0c;适用于各类应用 在当今的电子设备中&#xff0c;电源管理起着至关重要的作用。一款高效、稳定、可靠的电源芯片&#xff0c;是保证设备正常运行的关键。今天&#xff0c;我们为大家介绍一款性能卓越的100V降…

d2l绘图不显示的问题

之前试了各种方法都不行 在pycharm中还是不行&#xff0c;但是在anaconda中的命令行是可以的 anaconda prompt conda activaye py39 #进入f盘 F: #运行文件 python F:\python_code\softmax.py

Python数据科学视频讲解: 基本输出函数 print( )函数

2.4 基本输出函数&#xff1a;print()函数 视频为《Python数据科学应用从入门到精通》张甜 杨维忠 清华大学出版社一书的随书赠送视频讲解2.4节内容。本书已正式出版上市&#xff0c;当当、京东、淘宝等平台热销中&#xff0c;搜索书名即可。内容涵盖数据科学应用的全流程&…