AI客服-接入deepseek大模型到微信(本地部署deepseek集成微信自动收发消息)

1.本地部署

1.1 ollama

Ollama软件通过其高度优化的推理引擎和先进的内存管理机制,显著提升了大型语言模型在本地设备上的运行效率。其核心采用了量化技术(Quantization)以降低模型的计算复杂度和存储需求,同时结合张量并行计算(Tensor Parallelism)混合精度计算(Mixed Precision Computing),在FP16、INT8等低精度格式下实现高效的数值运算,从而大幅减少显存占用并加速推理过程。此外,Ollama支持动态批处理(Dynamic Batching)分布式推理(Distributed Inference),能够根据输入请求动态调整资源分配,并通过多GPU或节点间的高效通信协议(如NCCL)实现弹性扩展,突破单机硬件限制。为确保兼容性,Ollama内置了对主流框架(如PyTorch、TensorFlow)的支持,并通过ONNX RuntimeTensorRT进一步优化模型性能,同时提供灵活的API接口和模块化设计,允许用户进行自定义微调(Fine-tuning)和Prompt工程,满足多样化应用场景需求。

1.1.1 下载安装

https://ollama.com/download
在这里插入图片描述双击打开安装,ollama默认只能安装在C盘,占用:4.6G 空间。

C:\用户\用户名称\AppData\Local\Programs\Ollama

我的电脑中安装目录:C:\Users\Administrator\AppData\Local\Programs\Ollama
在这里插入图片描述
在这里插入图片描述

1.1.2 环境变量

默认ollama去下载部署deepseek模型时,会放在C盘 C:\Users\Administrator\.ollama\models文件夹中。修改环境变量,可以让后续模型下载到其他盘符。

OLLAMA_MODELS D:\ollama\models
在这里插入图片描述

配置好之后,ollama重启重启电脑 让环境变量生效。

1.2 deepseek部署

https://ollama.com/library/deepseek-r1
在这里插入图片描述
根据自己电脑配置部署模型规模

模型规模硬盘显存需求内存显卡要求
1.5B1.1 GB~2-3 GB~4-6 GB单卡(RTX 3060/3090/4090)
7B4.7 GB~8-12 GB~16-24 GB单卡(RTX 3090/4090/A100)
8B4.9 GB~9-13 GB~18-26 GB单卡(RTX 3090/4090/A100)
14B9.0 GB~16-20 GB~32-40 GB单卡(A100 40GB)
32B20 GB~35-45 GB~70-90 GB单卡(A100 80GB)或多卡并行
70B43 GB~75-90 GB~150-180 GB多卡(A100/H100 + NVLink)
671B404 GB~700-900 GB~1.4-1.8 TB多卡集群(A100/H100 + NVLink)

执行命令本地部署:

ollama run deepseek-r1:1.5b

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.deepseek调用

在这里插入图片描述
ollama中的服务可以用两种方式启动,默认监听本机localhost 和 端口11434

  • 在终端执行命令: ollama serve
    在这里插入图片描述
  • 找到ollama图标,点击运行
    在这里插入图片描述

2.1 终端调用

C:\Users\Administrator>ollama list
NAME                ID              SIZE      MODIFIED       
deepseek-r1:1.5b    a42b25d8c10a    1.1 GB    4 hours ago
C:\Users\Administrator>ollama run deepseek-r1:1.5b
>>> 
>>> 学习python的路径?
<think>
好吧,我现在要学习Python了。我对它还不是很了解,所以得一步一步来。首先,我应该确定我的学习目标是什么。可能是从基础开始,比如语     
法和基本概念,然后逐步深入到更高级的内容。
...
>>> /bye

在这里插入图片描述

2.2 API调用

对话相关的API有两个:

  • /api/generate,用于一次性生成特定文本的场景。
  • /api/chat,针对多轮对话上下文生成的回复消息。

接下来,结合案例来使用API来调用,需要安装Python环境 和 requests 模块。

示例:/api/generate

该 API 主要用于基于给定的提示信息生成文本内容。它适用于一次性生成特定文本的场景,不涉及对话上下文的维护.请求参数model:要使用的模型名称,例如 `deepseek-r1:1.5b`。prompt:提示信息,即向模型提供的输入文本,模型会根据该提示生成相应的内容。可选参数:还可以包含其他参数来控制生成的行为,如 `temperature`(控制生成文本的随机性,值越大越随机)、`max_tokens`(限制生成文本的最大令牌数)等。示例请求体{"model": "llama2","prompt": "写一首关于春天的诗","temperature": 0.7,"max_tokens": 200}
import requestsres = requests.post(url="http://localhost:11434/api/generate",json={"model": "deepseek-r1:1.5b","prompt": "写一首关于春天的诗","stream": False}
)data_dict = res.json()
print(data_dict)

在这里插入图片描述
示例:/api/chat

用于模拟对话交互,它会维护对话的上下文,使得模型能够根据之前的对话内容生成合适的回复,实现更自然、连贯的对话效果。请求参数model:要使用的模型名称。messages:一个包含对话消息的列表,每个消息对象包含 role(角色,如 user 表示用户消息,assistant 表示模型回复)和 content(消息内容)。同样可以包含可选参数来控制生成行为。示例请求体{"model": "deepseek-r1:1.5b","messages": [{"role": "user","content": "你好"}],"temperature": 0.8}
import requestsres = requests.post(url="http://localhost:11434/api/chat",json={"model": "deepseek-r1:1.5b","messages": [{"role": "user", "content": "你好"}],"stream": False}
)
data_dict = res.json()
print(data_dict)

在这里插入图片描述
可以将对话保存下来,生成对话:

import requestsmessage_list = []while True:text = input("请输入:")user_dict = {"role": "user", "content": text}message_list.append(user_dict)res = requests.post(url="http://localhost:11434/api/chat",json={"model": "deepseek-r1:1.5b","messages": message_list,"stream": False})data_dict = res.json()res_msg_dict = data_dict['message']print(res_msg_dict)message_list.append(res_msg_dict)

在这里插入图片描述

2.3 网页交互

搭建一个网站,在内部进行访问使用。

第1步:电脑安装nodejs

https://nodejs.org/zh-cn/download
在这里插入图片描述
第2步:下载网站源码

https://github.com/ollama-webui/ollama-webui-lite
在这里插入图片描述
下载并解压至任意目录。例如:F:\ollama-webui-lite-main 【不要有中文路径】
在这里插入图片描述
第3步:安装依赖并启动网站

打开CMD终端进入项目目录并执行相关命令。

C:\Users\Administrator>F:
F:\>cd F:\ollama-webui-lite-main
F:\ollama-webui-lite-main>
F:\ollama-webui-lite-main>npm ci
F:\ollama-webui-lite-main>npm run dev --  --port=9001

在这里插入图片描述
访问网站:http://localhost:9001/
在这里插入图片描述

3.微信收发信息

wxauto 是一个基于UIAutomation开发的用于实现微信自动化得库。

消息发送:支持发送文字、图片、文件、@群好友、引用消息等功能
聊天记录:可获取好友的聊天记录内容
监听消息:实时获取指定监听好友(群)的新消息

所用开发环境:Python 3.12.6 + PC微信 3.9.12(目前最新)
在这里插入图片描述
实现原理:在电脑安装PC微信,基于wxauto自动控制微信界面来实现收发消息等功能。
在这里插入图片描述
安装wxauto

pip install wxauto==3.9.11.17.5

发消息

from wxauto import WeChat
wx = WeChat()
wx.SendMsg(msg="你好呀", who="xxx_888")  # 指定人/群发消息# wx.SendMsg(msg="你好呀", who="群名", at=["张三","张开"])   # 群消息+@指定人
# wx.SendMsg(filepath="F:\xxx.png", who="用户或群") 
# wx.SendMsg(filepath=["文件A","文件B","F:\xxx.png"], who="用户或群") 

收消息(所有)

from wxauto import WeChatwx = WeChat()while True:# 等待接受收到的最新消息# {"用户昵称A":[消息对象1,消息对象2,消息对象3], "用户昵称B":[消息对象1,消息对象2,消息对象3], }msg_dict = wx.GetNextNewMessage()for username, msg_list in msg_dict.items():print("昵称:", username)# [消息对象1, 消息对象2, 消息对象3]for msg in msg_list:print("\t消息", msg.type, msg.content)

收消息(指定用户)

from wxauto import WeChat
wx = WeChat()wx.AddListenChat(who="运营")
wx.AddListenChat(who="xxx_888")while True:# { "用户A聊天窗口":[消息对象1,消息对象2,消息对象3],  "用户B聊天窗口":[消息对象1,消息对象2,消息对象3]}listen_dict = wx.GetListenMessage()for chat_win,message_list in listen_dict.items():# 用户或群名chat_user = chat_win.who# [消息对象1,消息对象2,消息对象3]for msg in message_list:if msg.type != "friend":continueprint(chat_user, msg.content)# 回复消息# chat_win.SendMsg("回复的内容")time.sleep(5)

👏欢迎贡献代码和改进项目!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/21572.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python VsCode DeepSeek接入

Python VsCode DeepSeek接入 创建API key 首先进入DeepSeek官网&#xff0c;https://www.deepseek.com/ 点击左侧“API Keys”&#xff0c;创建API key&#xff0c;输出名称为“AI” 点击“创建"&#xff0c;将API key保存&#xff0c;复制在其它地方。 在VsCode中下载…

【python】网页批量转PDF

安装wkhtmltopdf 网站&#xff1a;wkhtmltopdf wkhtmltopdf http://www.baidu.com/ D:website1.pdf 安装pdfkit库 pip install pdfkit 批量转换代码 import os import pdfkit path_wkthmltopdf rE:\Program Files\wkhtmltopdf\bin\wkhtmltopdf.exe config pdfkit.configu…

架构师面试(三):订阅模型

问题 对【注册中心】【配置中心】【消息队列】和【IM】进行分析和抽象&#xff0c;可归纳出一个完整的业务模型单元&#xff0c;即【订阅系统】&#xff0c;下面关于实现订阅系统的几种模型的相关描述中&#xff0c;说法正确的有哪几项&#xff1f; A. 信箱模型&#xff0c;即…

数据结构:算法的时间复杂度和空间复杂度

1.算法效率 1.1 如何衡量一个算法的好坏 如何衡量一个算法的好坏呢&#xff1f; 比如对于以下斐波那契数列&#xff1a; long long Fib(int N) {if(N < 3)return 1;return Fib(N-1) Fib(N-2); }斐波那契数列的递归实现方式非常简洁&#xff0c;但简洁一定好吗&#xff…

linux下pip下载项目失败

想下载CLIP的项目复现代码的时候&#xff0c;出现问题如下&#xff1a; 于是手动使用 Git 克隆仓库&#xff0c; git clone https://github.com/openai/CLIP.git cd CLIP pip install .ls查看文件如下&#xff1a;(手动克隆git项目成功)

Redis文档总结

文档&#xff1a;https://redis.com.cn/topics/why-use-redis.html 1.我们为什么一定要用 Redis 呢&#xff1f; 速度快&#xff0c;完全基于内存&#xff0c;使用 C 语言实现&#xff0c;网络层使用 epoll 解决高并发问题&#xff0c;单线程模型避免了不必要的上下文切换及竞争…

【前端框架】Vue3 面试题深度解析

本文详细讲解了VUE3相关的面试题&#xff0c;从基础到进阶到高级&#xff0c;分别都有涉及&#xff0c;希望对你有所帮助&#xff01; 基础题目 1. 简述 Vue3 与 Vue2 相比有哪些主要变化&#xff1f; 答案&#xff1a; 响应式系统&#xff1a;Vue2 使用 Object.definePrope…

Django+Vue3全栈开发实战:从零搭建博客系统

文章目录 1. 开发环境准备2. 创建Django项目与配置3. 设计数据模型与API4. 使用DRF创建RESTful API5. 创建Vue3项目与配置6. 前端页面开发与组件设计7. 前后端交互与Axios集成8. 项目优化与调试9. 部署上线10. 总结与扩展10.1 项目总结10.1.1 技术栈回顾10.1.2 项目亮点 10.2 扩…

【论文笔记】MambaGlue: Fast and Robust Local Feature Matching With Mamba

【引用格式】&#xff1a;Ryoo K, Lim H, Myung H. MambaGlue: Fast and Robust Local Feature Matching With Mamba[J]. arXiv preprint arXiv:2502.00462, 2025. 【网址】&#xff1a;https://arxiv.org/pdf/2502.00462 【开源代码】&#xff1a;https://github.com/uri-Ka…

Office word打开加载比较慢处理方法

1.添加safe参数 ,找到word启动项,右击word,选择属性 , 添加/safe , 应用并确定 2.取消加载项,点击文件,点击选项 ,点击加载项,点击转到,取消所有勾选,确定。

Denoising Diffusion Restoration Models论文解读

论文要点 恢复的线性逆问题可以使用预训练的DDPM完成&#xff1a;1. 将降质矩阵使用SVD&#xff0c;得到分解矩阵&#xff1b;2. 使用分解矩阵将图像投影到降质类型间共享的谱空间&#xff1b;3. 谱空间中执行DDPM。 评价 同Track的方法同样很多&#xff0c;比如后续的DDNM、…

【JMeter使用-2】JMeter中Java Request采样器的使用指南

Apache JMeter 是一款功能强大的性能测试工具&#xff0c;支持多种协议和测试场景。除了内置的采样器&#xff08;如HTTP请求、FTP请求等&#xff09;&#xff0c;JMeter还允许通过 Java Request采样器 调用自定义的Java代码&#xff0c;从而实现更复杂的测试逻辑。本文将详细介…

教学资料档案管理系统

本系统构建 JAVA 体系的后端系统&#xff0c;围绕以安全&#xff0c;可靠&#xff0c;高速&#xff0c;健壮&#xff0c;易于扩展为目标的方向进行开发&#xff0c;在阿里等开源库的基础上实现提供教学资料档案的管理系统的后端接口的微服务架构系统。 功能包含&#xff1a;系…

蓝桥杯(B组)-每日一题(1093字符逆序)

c中函数&#xff1a; reverse(首位置&#xff0c;尾位置&#xff09; reverse(s.begin(),s.end()) 头文件&#xff1a;<algorithm> #include<iostream> #include<algorithm>//运用reverse函数的头文件 using namespace std; int main() {string s;//定义一…

每日一题——矩阵最长递增路径

矩阵最长递增路径问题 题目描述数据范围&#xff1a;进阶要求&#xff1a;示例示例 1示例 2 题解思路算法步骤&#xff1a;代码实现代码解释复杂度分析总结 题目描述 给定一个 n 行 m 列的矩阵 matrix&#xff0c;矩阵内所有数均为非负整数。你需要在矩阵中找到一条最长路径&a…

vscode 配置 Copilot 提示GHE.com连接失败

步骤一&#xff1a;打开设置并进入 settings.json 点击菜单栏中的 “文件” -> “首选项” -> “设置”。 在搜索设置栏中输入 “Copilot: Advanced”。 点击搜索结果下方的 “在 settings.json 中编辑” 链接&#xff0c;这会打开 settings.json 文件。 步骤二&#…

DEX-EE三指灵巧手:扩展AI与机器人研究的边界

DEX-EE三指灵巧手&#xff0c;由Shadow Robot与Google DeepMind合作开发&#xff0c;以其先进技术和设计&#xff0c;正在引领AI与机器人研究的新趋势。其高精度传感器和灵活的机械手指&#xff0c;能够捕捉复杂的环境数据&#xff0c;为强化学习实验提供了可靠支持。 Shadow R…

cornerstone3D学习笔记-MPR

最近在研究如何利用cornerstone3D (v1.70.13) 来实现MPR功能&#xff0c;找到它的一个demo -- volumeBasic, 运行效果如下图 看了下主程序的示例代码&#xff0c;非常简单&#xff0c;可以说corestone3D这个库把很多细节都封装起来了&#xff0c;使得调用者可以很简单的快速实…

基于YOLO11深度学习的果园苹果检测与计数系统设计与实现【python源码+Pyqt5界面+数据集+训练代码】

《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】 项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【…

数据中心储能蓄电池状态监测管理系统 组成架构介绍

安科瑞刘鸿鹏 摘要 随着数据中心对供电可靠性要求的提高&#xff0c;蓄电池储能系统成为关键的后备电源。本文探讨了蓄电池监测系统在数据中心储能系统中的重要性&#xff0c;分析了ABAT系列蓄电池在线监测系统的功能、技术特点及其应用优势。通过蓄电池监测系统的实施&#…