时间序列预测 — BiLSTM实现多变量多步光伏预测(Tensorflow)

目录

1 数据处理

1.1 导入库文件

1.2 导入数据集

1.3 缺失值分析

2 构造训练数据

3 模型训练

3.1 BiLSTM网络 

3.2 模型训练

4 模型预测


1 数据处理

1.1 导入库文件

import time
import datetime
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt  
from sampen import sampen2  # sampen库用于计算样本熵
from vmdpy import VMD  # VMD分解库import tensorflow as tf 
from sklearn.cluster import KMeans
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error, mean_absolute_percentage_error 
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Dropout, LSTM, GRU
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping# 忽略警告信息
import warnings
warnings.filterwarnings('ignore')  

1.2 导入数据集

实验数据集采用数据集8:新疆光伏风电数据集(下载链接),数据集包括组件温度(℃) 、温度(°)    气压(hPa)、湿度(%)、总辐射(W/m2)、直射辐射(W/m2)、散射辐射(W/m2)、实际发电功率(mw)特征,时间间隔15min。对数据进行可视化:

# 导入数据
data_raw = pd.read_excel("E:\\课题\\08数据集\\新疆风电光伏数据\\光伏2019.xlsx")
data_raw
from itertools import cycle
# 可视化数据
def visualize_data(data, row, col):cycol = cycle('bgrcmk')cols = list(data.columns)fig, axes = plt.subplots(row, col, figsize=(16, 4))fig.tight_layout()if row == 1 and col == 1:  # 处理只有1行1列的情况axes = [axes]  # 转换为列表,方便统一处理for i, ax in enumerate(axes.flat):if i < len(cols):ax.plot(data.iloc[:,i], c=next(cycol))ax.set_title(cols[i])else:ax.axis('off')  # 如果数据列数小于子图数量,关闭多余的子图plt.subplots_adjust(hspace=0.6)plt.show()visualize_data(data_raw.iloc[:,1:], 2, 4)

​单独查看部分功率数据,发现有较强的规律性。

​因为只是单变量预测,只选取实际发电功率(mw)数据进行实验:

1.3 缺失值分析

首先查看数据的信息,发现并没有缺失值

data_raw.info()

 进一步统计缺失值

data_raw.isnull().sum()

2 构造训练数据

构造训练数据,也是真正预测未来的关键。首先设置预测的timesteps时间步、predict_steps预测的步长(预测的步长应该比总的预测步长小),length总的预测步长,参数可以根据需要更改。

timesteps = 96*5 #构造x,为96*5个数据,表示每次用前96*5个数据作为一段
predict_steps = 96 #构造y,为96个数据,表示用后96个数据作为一段
length = 96 #预测多步,预测96个数据
feature_num = 7 #特征的数量

通过前5天的timesteps数据预测后一天的数据predict_steps个,需要对数据集进行滚动划分(也就是前timesteps行的特征和后predict_steps行的标签训练,后面预测时就可通过timesteps行特征预测未来的predict_steps个标签)。因为是多变量,特征和标签分开划分,不然后面归一化会有信息泄露的问题。

# 构造数据集,用于真正预测未来数据
# 整体的思路也就是,前面通过前timesteps个数据训练后面的predict_steps个未来数据
# 预测时取出前timesteps个数据预测未来的predict_steps个未来数据。
def create_dataset(datasetx,datasety,timesteps=36,predict_size=6):datax=[]#构造xdatay=[]#构造yfor each in range(len(datasetx)-timesteps - predict_steps):x = datasetx[each:each+timesteps]y = datasety[each+timesteps:each+timesteps+predict_steps]datax.append(x)datay.append(y)return datax, datay

数据处理前,需要对数据进行归一化,按照上面的方法划分数据,这里返回划分的数据和归一化模型,函数的定义如下:

# 数据归一化操作
def data_scaler(datax,datay):# 数据归一化操作scaler1 = MinMaxScaler(feature_range=(0,1))scaler2 = MinMaxScaler(feature_range=(0,1))datax = scaler1.fit_transform(datax)datay = scaler2.fit_transform(datay)# 用前面的数据进行训练,留最后的数据进行预测trainx, trainy = create_dataset(datax[:-timesteps-predict_steps,:],datay[:-timesteps-predict_steps,0],timesteps, predict_steps)trainx = np.array(trainx)trainy = np.array(trainy)return trainx, trainy, scaler1, scaler2

然后对数据按照上面的函数进行划分和归一化。通过前5天的96*5数据预测后一天的数据96个,需要对数据集进行滚动划分(也就是前96*5行的特征和后96行的标签训练,后面预测时就可通过96*5行特征预测未来的96个标签)

datax = df_vmd[:,:-1]
datay = df_vmd[:,-1].reshape(df_vmd.shape[0],1)
trainx, trainy, scaler1, scaler2 = data_scaler(datax, datay)

3 模型训练

3.1 BiLSTM网络 

长短期记忆神经网络(Long Short-Term Memory, LSTM) 是一种时间循环神经网络,是为
了解决一般的RNN存在的长期依赖问题而专门设计出来的,所有的RNN都具有一种重复神经
网络模块的链式形式。在标准RNN中,这个重复的结构模块只有一个非常简单的结构,例如一
个tanh层。 LSTM神经网络采用门控机制替换了循环神经网络简单的隐含层神经元, 可以解决长
期依赖的问题,在处理时序问题上表现出色。

LSTM 神经网络

传统的 LSTM 网络只能根据历史状态向前编码,无法考虑反向序列的影响。而电力负荷数
据变化与时间发展密切相关,未来数据通常与过去数据相似, 为了更全面、准确地预测,需要
考虑反向序列的影响。 双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,
BiLSTM) 引入了双向计算的思想,它可以实现基于原始的 LSTM 网络同时进行正向和反向计
算, 可以同时提取前向和后向信息,更好地挖掘负荷数据的时序特征,进一步提高预测模型精度。

BiLSTM 神经网络

可以通过Bidirectional()来构建一个BiLSTM模型并进行训练的过程,实现主体代码如下:

    model.add(Bidirectional(LSTM(units=50, return_sequences=True), input_shape=(timesteps, feature_num)))model.add(Bidirectional(LSTM(units=100, return_sequences=True), input_shape=(timesteps, feature_num)))model.add(Bidirectional(LSTM(units=150)))
  •  units=50:表示LSTM层中有50个神经元
  • return_sequences=True:表示该层返回整个序列而不仅仅是输出序列的最后一个
  • input_shape=(timesteps, feature_num):表示输入数据的形状为(timesteps, feature_num),这里timesteps和feature_num是预先定义好的输入数据的时间步数和特征数。

第一行代码向模型中再次添加了一个双向的LSTM层,使用了units=50个神经元。

第二行代码向模型中再次添加了一个双向的LSTM层,与上一行类似,但这次使用了units=100个神经元。

第三行代码向模型中添加了另一个双向的LSTM层,这次没有设置return_sequences=True,表示该层不返回整个序列,而是只返回输出序列的最后一个值。
 

3.2 模型训练

首先搭建模型的常规操作,然后使用训练数据trainx和trainy进行训练,进行50个epochs的训练,每个batch包含64个样本。此时input_shape划分数据集时每个x的形状。(建议使用GPU进行训练,因为本人电脑性能有限,建议增加epochs值;也可以依次增加LSTM网络中units)

# # 创建BiLSTM模型
def BiLSTM_model_train(trainx, trainy):# 调用GPU加速gpus = tf.config.experimental.list_physical_devices(device_type='GPU')for gpu in gpus:tf.config.experimental.set_memory_growth(gpu, True)# BiLSTM网络构建 start_time = datetime.datetime.now()model = Sequential()model.add(Bidirectional(LSTM(units=50, return_sequences=True), input_shape=(timesteps, feature_num)))model.add(Bidirectional(LSTM(units=100, return_sequences=True), input_shape=(timesteps, feature_num)))model.add(Bidirectional(LSTM(units=150)))model.add(Dropout(0.1))model.add(Dense(predict_steps))model.compile(loss='mse', optimizer='adam')# 模型训练model.fit(trainx, trainy, epochs=50, batch_size=64)end_time = datetime.datetime.now()running_time = end_time - start_time# 保存模型model.save('BiLSTM_model.h5')# 返回构建好的模型return model
model = BiLSTM_model_train(trainx, trainy)

4 模型预测

首先加载训练好后的模型

# 加载模型
from tensorflow.keras.models import load_model
model = load_model('BiLSTM_model.h5')

准备好需要预测的数据,训练时保留了6天的数据,将前5天的数据作为输入预测,将预测的结果和最后一天的真实值进行比较。

y_true = datay[-timesteps-predict_steps:-timesteps]
x_pred = datax[-timesteps:]

预测并计算误差,并进行可视化,将这些步骤封装为函数。

# 预测并计算误差和可视化
def predict_and_plot(x, y_true, model, scaler, timesteps):# 变换输入x格式,适应LSTM模型predict_x = np.reshape(x, (1, timesteps, feature_num))  # 预测predict_y = model.predict(predict_x)predict_y = scaler.inverse_transform(predict_y)y_predict = []y_predict.extend(predict_y[0])# 计算误差r2 = r2_score(y_true, y_predict)rmse = mean_squared_error(y_true, y_predict, squared=False)mae = mean_absolute_error(y_true, y_predict)mape = mean_absolute_percentage_error(y_true, y_predict)print("r2: %.2f\nrmse: %.2f\nmae: %.2f\nmape: %.2f" % (r2, rmse, mae, mape))# 预测结果可视化cycol = cycle('bgrcmk')plt.figure(dpi=100, figsize=(14, 5))plt.plot(y_true, c=next(cycol), markevery=5)plt.plot(y_predict, c=next(cycol), markevery=5)plt.legend(['y_true', 'y_predict'])plt.xlabel('时间')plt.ylabel('功率(kW)')plt.show()return y_predict
y_predict_nowork = predict_and_plot(x_pred, y_true, model, scaler2, timesteps)

最后得到可视化结果,发下可视化结果并不是太好,可以通过调参和数据处理进一步提升模型预测效果。

​  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/216124.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从有趣的AI剧情游戏《完蛋!我被名场面包围了》来看AI游戏的思考

大家好&#xff0c;我是极智视界&#xff0c;欢迎关注我的公众号&#xff0c;获取我的更多前沿科技分享 邀您加入我的知识星球「极智视界」&#xff0c;星球内有超多好玩的项目实战源码和资源下载&#xff0c;链接&#xff1a;https://t.zsxq.com/0aiNxERDq 这个话题总能引起很…

MySQL笔记-第18章_MySQL8其它新特性

视频链接&#xff1a;【MySQL数据库入门到大牛&#xff0c;mysql安装到优化&#xff0c;百科全书级&#xff0c;全网天花板】 文章目录 第18章_MySQL8其它新特性1. MySQL8新特性概述1.1 MySQL8.0 新增特性1.2 MySQL8.0移除的旧特性 2. 新特性1&#xff1a;窗口函数2.1 使用窗口…

在idea中使用maven创建dynamic web project

0、先正确安装MAVEN, TOMCAT &#xff0c;并集成到idea 1、new 一个 project&#xff0c; 使用maven的archetype-webapp创建 2、等待创建&#xff0c;会提示build success 3、给project 添加tomcat配置&#xff0c;并部署project到 tomcat 4、运行 5、OK 6、再次引入时&…

数据结构之归并排序及排序总结

目录 归并排序 归并排序的时间复杂度 排序的稳定性 排序总结 归并排序 归并排序大家只需要掌握其递归方法即可&#xff0c;非递归方法由于在某些特殊场景下边界难控制&#xff0c;我们一般很少使用非递归实现归并排序。那么归并排序的递归方法我们究竟是怎样实现呢&#xff…

算法--最小生成树和二分图

这里写目录标题 Xmind最小生成树Prim算法思想例子题解 kruskal算法思想例子题解 二分图染色法思想 二级目录二级目录 一级目录二级目录二级目录二级目录 一级目录二级目录二级目录二级目录 一级目录二级目录二级目录二级目录 Xmind 最小生成树 Prim算法 思想 对于dist数组&am…

Spring boot -- 学习HttpMessageConverter

文章目录 1. Json格式数据获取2. 为什么返回Json格式的数据2.1 注解SpringBootAppliaction2.1.1 SpringBootConfiguration2.1.2 ComponentScan2.1.3 EnableAutoConfiguration2.1.3.1 HttpMessageConvertersAutoConfiguration2.1.3.2 WebMvcAutoConfiguration 2.2 注解RestContr…

独立完成软件的功能的测试(2)

独立完成软件的功能的测试&#xff08;2&#xff09; &#xff08;12.13&#xff09; 1. 对穷举场景设计测试点&#xff08;等价类划分法&#xff09; 等价类划分法的概念&#xff1a; 说明&#xff1a;数据有共同特征&#xff0c;成功失败分类&#xff1a; 有效&#xff1a…

基于Python+WaveNet+MFCC+Tensorflow智能方言分类—深度学习算法应用(含全部工程源码)(二)

目录 前言引言总体设计系统整体结构图系统流程图 运行环境模块实现1. 数据预处理1&#xff09;数据介绍2&#xff09;数据测试3&#xff09;数据处理 相关其它博客工程源代码下载其它资料下载 前言 博主前段时间发布了一篇有关方言识别和分类模型训练的博客&#xff0c;在读者…

Python和Beautiful Soup爬虫助力提取文本内容

大家好&#xff0c;网络爬虫是一项非常抢手的技能&#xff0c;收集、分析和清洗数据是数据科学项目中最重要的部分。今天介绍如何从链接中爬取高质量文本内容&#xff0c;我们使用迭代&#xff0c;从大约700个链接中进行网络爬取。如果想直接跳转到代码部分&#xff0c;可以在下…

【JUC】二十六、Java对象内存布局和对象头

文章目录 0、前置1、对象的内存布局2、对象头之对象标记Mark Word3、对象头之类元信息4、实例数据5、对齐填充6、对象内存布局之JOL证明7、对象分代年龄8、压缩指针 0、前置 heap&#xff08;堆区&#xff09;&#xff0c;分为新生区new、养老区old、元空间Metaspace&#xff…

C语言—每日选择题—Day46

第一题 1. 下列程序段的输出结果是&#xff08;&#xff09; #include <stdio.h> int main() {int x 1,a 0,b 0;switch(x) {case 0: b;case 1: a;case 2: a;b;}printf("a%d,b%d\n", a, b);return 0; } A&#xff1a;a2,b1 B&#xff1a;a1,b1 C&#xf…

探秘机器学习核心逻辑:梯度下降的迭代过程 (图文详解)

一 需求解函数 f() 和 g()函数分别为求y值和求导数的函数。 目的&#xff1a;求该函数的最小值&#xff1a; 代码&#xff1a; import numpy as np import matplotlib.pyplot as plt f lambda x : (x - 3.5) ** 2 - 4.5 * x 10 g lambda x : 2 * (x - 3.5) - 4.5x np.l…

接口管理——Swagger

Swagger是一个用于设计、构建和文档化API的工具集。它包括一系列工具&#xff0c;如Swagger Editor&#xff08;用于编辑Swagger规范&#xff09;、Swagger UI&#xff08;用于可视化API文档&#xff09;和Swagger Codegen&#xff08;用于根据API定义生成客户端库、server stu…

SpringCloud系列(二)| Nacos的安装与配置

Nacos是阿里巴巴提供的一个开源的可作为注册中心和配置中心的SpringCloud组件。 Nacos/nɑ:kəʊs/ 是 Dynamic Naming and Configuration Service 的首字母简称;一个更易于构 建云原生应用的动态服务发现、配置管理和服务管理平台。 简单来说Nacos有两个核心功能&#xff0c…

深度学习中的各类评价指标

深度学习中的各类评价指标 1 Dice Loss2 Precision&#xff08;精度&#xff09;3 Recall&#xff08;召回率&#xff09;4 F-Score5 mAP 1 Dice Loss Dice Loss&#xff0c;也叫Soft Dice Coefficient&#xff0c;是一种用于图像分割任务的损失函数。它基于目标分割图像与模型…

Uniapp项目打包到多个平台...

打包到微信小程序 先设置微信开发者工具的路径 运行到小程序模拟器&#xff0c;会自动打开微信开发者工具&#xff08;需要先在微信开发者工具->设置->安全设置->服务端口切换为打开状态&#xff09; 3. 微信开发者工具上传版本&#xff08;提示覆盖版本就可以了&a…

“百里挑一”AI原生应用亮相,百度智能云千帆AI加速器首个Demo Day来了!

作者简介&#xff1a; 辭七七&#xff0c;目前大二&#xff0c;正在学习C/C&#xff0c;Java&#xff0c;Python等 作者主页&#xff1a; 七七的个人主页 文章收录专栏&#xff1a; 七七的闲谈 欢迎大家点赞 &#x1f44d; 收藏 ⭐ 加关注哦&#xff01;&#x1f496;&#x1f…

用户管理第2节课 -- idea 2023.2 创建表

一、懂得 1.1编码格式是防止乱码的&#xff0c;utf-8是完全够的&#xff0c;那几个基本没差别 网址&#xff1a; 【IDEA——连接MySQL数据库&#xff0c;创建库和表】_idea中数据库-CSDN博客 这些是MySQL数据库中的一些术语&#xff0c;可以简单解释如下&#xff1a; 1、col…

第三十四周:文献阅读+LSTM学习

目录 摘要 Abstract 文献阅读&#xff1a;综合EMD-LSTM模型在城市排水管网水质预测中的应用 现有问题 提出方法 EMD-LSTM综合模型 研究框架 结论 Long Short-term Memory(长短期记忆) 1. LSTM的结构 2. Multiple-layer LSTM 3.3 LSTM Example 3. GRU LSTM实现PM2…

Java+SSM+MySQL基于微信的在线协同办公小程序(附源码 调试 文档)

基于微信的在线协同办公小程序 一、引言二、系统设计三、技术架构四、管理员功能设计五、员工功能设计六、系统实现七、界面展示八、源码获取 一、引言 随着科技的飞速发展&#xff0c;移动互联网已经深入到我们生活的各个角落。在这个信息时代&#xff0c;微信作为全球最大的…