冒充人类作者,ChatGPT等滥用引担忧,一文综述AI生成文本检测方法

65efecfb5e778479e6b051622b33c4ad.png

来源:机器之心
本文约1800字,建议阅读5分钟
大型语言模型(LLM)的出现导致其生成的文本非常复杂,几乎与人类编写的文本难以区分。本文旨在提供现有大型语言模型生成文本检测技术的概述,并加强对语言生成模型的控制和管理。

自然语言生成 (NLG) 技术的最新进展显着提高了大型语言模型生成文本的多样性、控制力和质量。一个值得注意的例子是 OpenAI 的 ChatGPT,它在回答问题、撰写电子邮件、论文和代码等任务中展示了卓越的性能。然而,这种新发现的高效生成文本的能力也引起了人们对检测和防止大型语言模型在网络钓鱼、虚假信息 和学术造假等任务中滥用的担忧。例如,由于担心学生利用 ChatGPT 写作业,纽约公立学校全面禁止了 ChatGPT 的使用,媒体也对大型语言模型产生的假新闻发出警告。这些对大型语言模型 滥用的担忧严重阻碍了自然语言生成在媒体和教育等重要领域的应用。

最近关于是否可以正确检测大型语言模型生成的文本以及如何检测的讨论越来越多,这篇文章对现有检测方法进行了全面的技术介绍。

35932d4e94b3f1f942f91917832aa8d2.png

  • 论文地址:

    https://github.com/datamllab/The-Science-of-LLM-generated-Text-Detection

  • 相关研究地址:

    https://github.com/datamllab/awsome-LLM-generated-text-detection/tree/main

现有的方法大致可分为两类:黑盒检测和白盒检测。

a29732f8b4b904d131a9f43c05409a0f.png

大型语言模型生成文本检测概述

  • 黑盒检测方法对大型语言模型通常只有 API 级别的访问权限。因此,这类方法依靠于收集人类和机器的文本样本来训练分类模型;

  • 白盒检测,这类方法拥有对大型语言模型的所有访问权限,并且可以通过控制模型的生成行为或者在生成文本中加入水印(watermark)来对生成文本进行追踪和检测。

在实践中,黑盒检测器通常由第三方构建,例如 GPTZero,而白盒检测器通常由大型语言模型开发人员构建。

a14c9442d3f6bef06dc8c7119e4442c6.png

大型语言模型生成的文本检测分类学

黑盒检测

黑盒检测一般有三个步骤,分别是数据收集,特征选择和模型建立。

对于人类文本的收集,一种方法是招募专业人员进行数据采集,但是这种方法费时费力,不适于大型数据集的收集,更加高效的方法是利用现有的人类文本数据,比如从维基百科上收集各种专家编辑的词条,或者是从媒体上收集数据,例如 Reddit。

特征的选取一般分为统计特征,语言特征和事实特征。其中统计特征一般是用来检查大型语言模型生成文本是否在一些常用的文本统计指标上于人类文本不同,常用的有 TFIDF、齐夫定律等。语言特征一般是找一些语言学特征,比如词性,依存分析,情感分析等。最后,大型语言模型常常会生成一些反事实的言论,因此事实验证也可以提供一些区分大型语言模型生成文本的信息。

现有的分类模型一般分为传统的机器学习模型,例如 SVM 等。最新的研究倾向于利用语言模型来做主干, 例如 BERT,RoBERTa, 并且取得了更高的检测表现。

dd4b5b7378dcd0804dd9750289693b34.png

这两种文本之间有明显的不同。human-written 文本来自 Chalkbeat New York。

白盒检测

白盒检测一般默认是大型语言模型开发人员提供的检测。不同于黑盒检测,白盒检测对模型拥有完全访问权力, 因此能通过改变模型的输出来植入水印,以此达到检测的目的。

目前的检测方法可以分为 post-hoc 水印和 inference time 水印

  • 其中 post-hoc 水印是在大型语言模型生成完文本后,再在文本中加入一些隐藏的信息用于之后的检测;

  • Inference time 水印则是改变大型语言模型对 token 的采样机制来加入水印,在大型语言模型生成每一个 token 的过程中,其会根据所有 token 的概率和预设的采样策略来选择下一个生成的词,这个选择的过程就可以加入水印。

e759b0c606f0ff6499610d2d1d8579c7.png

Inference time 水印

作者担忧

(1)对于黑盒模型,数据的收集是非常关键的一步,但是这个过程非常容易引入偏见(biases)。例如现有的数据集主要集中在问答,故事生成几个任务,这就引入了主题的偏见。此外,大模型生成的文本经常会出现固定的风格或者格式。这些偏见常常会被黑盒分类器作为分类的主要特征而降低了检测的鲁棒性。

随着大型语言模型能力的提升,大型语言模型生成的文本和人类的差距会越来越小,导致黑盒模型的检测准确性越来越低,因此白盒检测是未来更有前景的检测方式。

(2)现有的检测方法默认大型语言模型是被公司所有,因而所有的用户都是通过 API 来获得公司的大型语言模型服务,这种多对一的关系非常有利用检测系统的部署。但是如果公司开源了大型语言模型,这将导致现有的检测方法几乎全部失效。

对于黑盒检测,因为用户可以微调他们的模型,改变模型输出的风格或者格式,从而导致黑盒检测无法找到通用的检测特征。

白盒检测可能是一个解决办法,公司在开源模型之前可以给模型中加入一个水印。但是用户同样可以通过微调模型,改变模型 token 的采样机制来移除水印。现在还没有一种水印技术能够抵御用户的这些潜在攻击。

编辑:文婧

865f076aaced02ee60f7fe094bbc6222.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/21819.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LLM 系列 | 15:如何用LangChain做长文档问答?

简介 西塞山前白鹭飞,桃花流水鳜鱼肥。 小伙伴们好,我是微信公众号《小窗幽记机器学习》的小编:卖酱猪蹄的小女孩。今天新开一个专题:LangChain实践。前文ChatGPT Prompt 工程和应用系列文章可以如下自取,预告一下该…

找出1-1000中的所有完美数

再次练习查找完美数,找出 1-1000 中的所有完美数。 【学习的细节是欢悦的历程】 Python 官网:https://www.python.org/ Free:大咖免费“圣经”教程《 python 完全自学教程》,不仅仅是基础那么简单…… 地址:https://l…

三元操作 三元操作符 if-else / ? :

Python 三元操作符 if-else , 其他语言三元操操作符 ? : ;“三元操作”语句,她也就是一个表达式。 【学习的细节是欢悦的历程】 Python 官网:https://www.python.org/ Free:大咖免费“圣经”教程《 python 完全自学教…

document-question-answering-bot(文档问答机器人)

任务说明: https://wiki.deepin.org 上有900多条deepin系统相关的中文教程和词条,请编写能根据这些内容回答问题的中文聊天机器人。使用者通过命令行界面输入问题,机器人输出回答和参考的wiki文档的链接。 聊天机器人要能根据 deepin wiki …

IOS真机调试、发布TestFlight等流程

IOS真机调试、发布TestFlight等流程 1、真机调试步骤 使用最新版本的xcode 14 可以简单的进行真机调试,不需要添加钥匙串之类的。 1、在Xcode -> Preferences -> Accounts 中添加苹果ID 2、创建你的项目,在Bundle Identifier中填写项目Identifie…

ChatGPT/InstructGPT论文(二)

一. 导读 第一篇解读:ChatGPT/InstructGPT论文(一) 继ChatGPT大火后,越来越多人想了解ChatGPT相关技术。OpenAI官网虽然没有给出ChatGPT足够详细的信息,但给出了一篇推荐阅读论文InstructGPT,经过对比&…

2023了,学习深度学习框架哪个比较好?

PPT、视频和对应的文章免费开源在:https://chenzomi12.github.io/ 都2023年,才来回答这个问题,自然毫无悬念地选择PyTorch,TensorFlow在大模型这一波浪潮中没有起死回生,有点惋惜,现在GLM、GPT、LLaMA等各种…

【ChatGPT】人工智能发展的背后厉害:跌宕起伏的近百年

文章目录 前言一、麦卡洛克-皮特斯神经元二、赫布式学习三、感知机四、反向传播算法五、卷积神经网络六、递归神经网络七、通用计算GPU芯片八.生成式神经网络与大型语言模型总结 前言 今天,ChatGPT等大型语言预训练神经网络模型已经成为广为人知的名字,…

ChatGPT又添劲敌?OpenAI核心员工创业,新模型获一片叫好

关注并星标 从此不迷路 计算机视觉研究院 公众号ID|ComputerVisionGzq 学习群|扫码在主页获取加入方式 计算机视觉研究院专栏 作者:Edison_G 在 ChatGPT 巨人的肩膀上又有了改进。 转自《机器之心》 ChatGPT 给 AI 领域带来的变革&#xff0c…

aigc分享

AIGC技术分享 AIGC概述 AIGC的概念、应用场景和发展历程https://36kr.com/p/2135547607286144 ppt https://36kr.com/p/2243237713604482 机器学习基础 机器学习的基本概念、分类和常用算法,如线性回归、决策树、支持向量机、神经网络等。 深度学习基础 深度学…

【倒计时2天】CCIG文档图像智能分析与处理论坛开启直播预约,共探智能文档处理前沿技术

文档是人们在日常生活、工作中产生的信息的重要载体,各领域从业者几乎每天都要与金融票据、商业规划、财务报表、会议记录、合同、简历、采购订单等文档“打交道”。让计算机具备阅读、理解和解释这些文档图像的能力,在智能金融、智能办公、电子商务等许…

Chatgpt-plus帮我写的Python教程

Chatgpt-plus帮我写的Python教程 昨天急不可耐的开通了Chatgpt plus,就想着赶快试用下,不得不说真的强大!,现在还只是gpt4模型,不知道gpt5模型出来会变成什么样子,下面是gpt花了三分钟帮我写的教程&#x…

程序员与chatgpt的碰撞

背景:生产环境要复制一条数据,并修改指定字段且id要自增 ChatGPT是一款非常出色的聊天机器人,它使用了最先进的自然语言处理技术,可以与人类进行自然的对话。它可以回答各种问题,包括一般的知识问题、天气、新闻、娱乐…

AI掌绘艺术:揭秘Stable Diffusion华美图韵背后那些提示词的秘密

开篇 好了好了,我知道这个标题有点大,大得像我妈的锅一样。但是,我保证,当你读完这篇文章后,你不仅会明白我为什么敢用这样的标题,而且你也会想试试宝贵的AI画画方法。 首先,我要说&#xff0…

ChatGPT背后的开源AI框架Ray,现在值10亿美元

机器之心报道 编辑:泽南、小舟 Ray 被 OpenAI、亚马逊等科技公司用来开发大模型,是最近异军突起的框架。 最近一段时间,文本生成的人工智能在互联网上掀起了一阵风暴:ChatGPT 因为可以对人们能想到的几乎任何问题提供非常详细、近…

ChatGPT背后的故事和秘密是什么?

大家好。近期,德国一家公司在公司内部暂停了使用人工智能应用ChatGPT,原因竟然是担心其可能会泄露敏感数据。这则消息引发了广泛的关注和探讨,下面我们来了解其中的详情吧! 首先,让我们了解一下ChatGPT是什么。ChatGP…

【阿里云】第一次进行域名注册、备案以及使用全过程

前言 随着ChatGPT的爆火,让我直面感受到了一项技术的突破可以产生堪比原子弹爆炸的威力,因而在品尝过ChatGPT带来的便利与甜头后,就一直在跟进,同时也在能力范围内,让数十位朋友使用上了ChatGPT 前段时间&#xff0c…

【AI提示】ChatGPT提示工程课程(吴恩达OpenAI)转换文本(中文chatgpt版)

设置 翻译 通用翻译器 语调变换 格式转换 拼写检查/语法检查。 转换 在本笔记中,我们将探索如何使用大型语言模型进行文本转换任务,例如语言翻译、拼写和语法检查、语气调整和格式转换。 设置 import openai import osfrom dotenv import load_dotenv, f…

ChatGPT游戏领域的创新助手|小智ai

ChatGPT丨小智ai丨chatgpt丨人工智能丨OpenAI丨聊天机器人丨AI语音助手丨GPT-3.5丨开源AI平台 导语: ChatGPT(Chat Generative Pre-trained Transformer)作为一种先进的自然语言处理模型,不仅在对话领域取得了突破,而且…

用ChatGPT控制NPC,行动逼真到像正常人!斯坦福谷歌新研究炸场,赋予大模型准确记忆力...

萧箫 发自 凹非寺量子位 | 公众号 QbitAI 放任25个AI共同生活,他们竟然模拟起了人类的行动! 不仅像人一样起床、刷牙、吃饭、睡觉,还会被迫“出门打工”,甚至在闲暇时分一起庆祝节日。 这一切,来自斯坦福和谷歌的一项新…