MATLAB在投资组合优化中的应用:从基础理论到实践

引言

投资组合优化是现代金融理论中的核心问题之一,旨在通过合理配置资产,实现风险与收益的最佳平衡。MATLAB凭借其强大的数学计算能力和丰富的金融工具箱,成为投资组合优化的理想工具。本文将详细介绍如何使用MATLAB进行投资组合优化,从基础理论到实际应用,帮助读者掌握这一重要技能。

投资组合优化基础理论

投资组合优化的核心是马科维茨(Markowitz)的均值-方差模型。该模型通过最小化投资组合的方差(风险)或最大化预期收益,找到最优的资产配置。具体来说,优化问题可以表示为:

[
\min_{\mathbf{w}} \mathbf{w}^T \Sigma \mathbf{w} \quad \text{或} \quad \max_{\mathbf{w}} \mathbf{w}^T \mathbf{\mu}
]

其中:
-w是资产权重向量;
-Σ是资产收益率的协方差矩阵;
-μ 是资产预期收益率向量。

约束条件通常包括:

  1. 权重之和为1:(\sum_{i=1}^n w_i = 1)
  2. 权重非负:(w_i \geq 0)(不允许卖空)。

数据准备:资产收益率与协方差矩阵

在MATLAB中,首先需要准备资产的历史收益率数据。假设我们有三只股票的历史收益率数据,可以通过以下代码生成模拟数据:

% 生成模拟资产收益率数据
rng(42); % 设置随机种子以确保可重复性
numAssets = 3;
numObservations = 100;
assetReturns = randn(numObservations, numAssets) * 0.05; % 正态分布收益率% 计算预期收益率和协方差矩阵
meanReturns = mean(assetReturns);
covMatrix = cov(assetReturns);disp('预期收益率:');
disp(meanReturns);
disp('协方差矩阵:');
disp(covMatrix);

在这里插入图片描述

代码解析

  1. 生成模拟数据:使用 randn 生成正态分布的随机数,模拟资产收益率。
  2. 计算统计量:使用 meancov 函数分别计算预期收益率和协方差矩阵。

投资组合优化:均值-方差模型

MATLAB的金融工具箱提供了 Portfolio 对象,可以方便地进行投资组合优化。以下代码演示如何使用 Portfolio 对象求解均值-方差优化问题:

% 创建 Portfolio 对象
p = Portfolio;
p = setAssetMoments(p, meanReturns, covMatrix);% 设置约束条件
p = setDefaultConstraints(p); % 权重之和为1,权重非负% 求解最小方差投资组合
minVarWeights = estimateFrontierLimits(p, 'min');
disp('最小方差投资组合权重:');
disp(minVarWeights);% 求解最大夏普比率投资组合
sharpeRatioWeights = estimateMaxSharpeRatio(p);
disp('最大夏普比率投资组合权重:');
disp(sharpeRatioWeights);

在这里插入图片描述

代码解析

  1. 创建 Portfolio 对象:使用 setAssetMoments 设置预期收益率和协方差矩阵。
  2. 设置约束条件:使用 setDefaultConstraints 设置权重之和为1且权重非负。
  3. 求解优化问题
    • estimateFrontierLimits 用于求解最小方差投资组合;
    • estimateMaxSharpeRatio 用于求解最大夏普比率投资组合。

有效前沿与资本配置线

有效前沿(Efficient Frontier)是投资组合优化中的重要概念,表示在给定风险水平下能够实现的最大收益。MATLAB可以绘制有效前沿和资本配置线(Capital Allocation Line, CAL),帮助投资者直观地理解风险与收益的关系。

绘制有效前沿

% 计算有效前沿
frontierWeights = estimateFrontier(p, 20);
[frontierRisk, frontierReturn] = estimatePortMoments(p, frontierWeights);% 绘制有效前沿
figure;
plot(frontierRisk, frontierReturn, 'b', 'LineWidth', 2);
xlabel('风险(标准差)');
ylabel('预期收益率');
title('有效前沿');
grid on;

在这里插入图片描述

绘制资本配置线

% 假设无风险收益率为2%
riskFreeRate = 0.02;% 计算资本配置线
calRisk = linspace(0, max(frontierRisk), 100);
calReturn = riskFreeRate + (max(frontierReturn) - riskFreeRate) / max(frontierRisk) * calRisk;% 绘制资本配置线
hold on;
plot(calRisk, calReturn, 'r--', 'LineWidth', 2);
legend('有效前沿', '资本配置线');

在这里插入图片描述


案例分析:多资产投资组合优化

假设我们有五只股票的历史收益率数据,目标是构建一个最优投资组合。以下是完整的代码实现:

% 生成模拟资产收益率数据
rng(42);
numAssets = 5;
numObservations = 200;
assetReturns = randn(numObservations, numAssets) * 0.05;% 计算预期收益率和协方差矩阵
meanReturns = mean(assetReturns);
covMatrix = cov(assetReturns);% 创建 Portfolio 对象
p = Portfolio;
p = setAssetMoments(p, meanReturns, covMatrix);
p = setDefaultConstraints(p);% 求解最小方差投资组合
minVarWeights = estimateFrontierLimits(p, 'min');
disp('最小方差投资组合权重:');
disp(minVarWeights);% 求解最大夏普比率投资组合
sharpeRatioWeights = estimateMaxSharpeRatio(p);
disp('最大夏普比率投资组合权重:');
disp(sharpeRatioWeights);% 绘制有效前沿
frontierWeights = estimateFrontier(p, 20);
[frontierRisk, frontierReturn] = estimatePortMoments(p, frontierWeights);
figure;
plot(frontierRisk, frontierReturn, 'b', 'LineWidth', 2);
xlabel('风险(标准差)');
ylabel('预期收益率');
title('五资产投资组合的有效前沿');
grid on;

在这里插入图片描述


结论

本文详细介绍了如何使用MATLAB进行投资组合优化,从基础理论到实际应用,涵盖了数据准备、均值-方差模型、有效前沿绘制等内容。通过MATLAB的金融工具箱,投资者可以高效地构建最优投资组合,实现风险与收益的最佳平衡。

在后续的文章中,我们将进一步探讨MATLAB在更复杂金融分析任务中的应用,如风险管理、资产定价和衍生品定价,敬请期待。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/21817.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Day15-后端Web实战-登录认证——会话技术JWT令牌过滤器拦截器

目录 登录认证1. 登录功能1.1 需求1.2 接口文档1.3 思路分析1.4 功能开发1.5 测试 2. 登录校验2.1 问题分析2.2 会话技术2.2.1 会话技术介绍2.2.2 会话跟踪方案2.2.2.1 方案一 - Cookie2.2.2.2 方案二 - Session2.2.2.3 方案三 - 令牌技术 2.3 JWT令牌2.3.1 介绍2.3.2 生成和校…

【实战篇】【深度介绍 DeepSeek R1 本地/私有化部署大模型常见问题及解决方案】

引言 大家好!今天我们来聊聊 DeepSeek R1 的本地/私有化部署大模型。如果你正在考虑或者已经开始了这个项目,那么这篇文章就是为你准备的。我们会详细探讨常见问题及其解决方案,帮助你更好地理解和解决在部署过程中可能遇到的挑战。准备好了…

大模型本地部署及本地知识库构建

1、引言 随着AI技术的快速发展和普及,越来越多的LLM开始开源,若想在本地尝试部署大模型和搭建知识库,可以使用ollamaLLMscherry Studio nomic-embed-text的框架来实现,以便于对AI简单应用流程的整体了解。本地部署和知识库的搭建…

在 Ansys Motion 中创建链式伸缩臂的分步指南

介绍 链传动在负载和/或运动要远距离传递的机器中非常多产,例如,在两个平行轴之间。链条驱动系统的设计需要了解载荷传递和运动学如何影响链条张力、轴轴承中的悬臂载荷、轴应力和运动质量等。使用 Ansys Motion,可以轻松回答上述所有问题以…

blender笔记2

一、物体贴地 物体->变换->对齐物体 ->对齐弹窗(对齐模式:反方,相对于:场景原点,对齐:z)。 之后可以设置原点->原点--3d游标 二、面上有阴影 在编辑模式下操作过后,物体面有阴影。 数据-&g…

SPRING10_SPRING的生命周期流程图

经过前面使用三大后置处理器BeanPostProcessor、BeanFactoryPostProcessor、InitializingBean对创建Bean流程中的干扰,梳理出SPRING的生命周期流程图如下

光子集成电路加速边缘AI推理:突破传统NPU的能效比极限

引言:边缘计算的能耗困局 某领先自动驾驶公司采用128核光子张量处理器后,激光雷达点云处理能效比达458TOPS/W,是传统车规级GPU方案的57倍。在16线束LiDAR实时语义分割任务中,光子矩阵乘法单元将特征提取延迟从8.3ms降至0.12ms&am…

【EndNote】WPS 导入EndNote 21

写在前面:有没有人有激活码,跪求! EndNote,在文献管理和文献引用方面很好用。写文章的时候,使用EndNote引入需要的文献会很方便。我目前用的WPS,想把EndNote的CWYW(Cite While You Write&#…

2025.2.23机器学习笔记:PINN文献阅读

2025.2.23周报 一、文献阅读题目信息摘要Abstract创新点网络架构架构A架构B架构C 实验结论后续展望 一、文献阅读 题目信息 题目: Physics-Informed Neural Networks for Modeling Water Flows in a River Channel期刊: IEEE TRANSACTIONS ON ARTIFICI…

SpringBoot 配置文件

介绍 配置文件时用来解决硬编码问题,把可能会发生改变的信息放在一个集中的地方也就说配置文件上,当我们启动某个程序的时候,应用程序会从配置文件中读取数据,并加载运行。 硬编码是指将数据直接嵌入到源代码中,也就…

Redis三剑客解决方案

文章目录 缓存穿透缓存穿透的概念两种解决方案: 缓存雪崩缓存击穿 缓存穿透 缓存穿透的概念 每一次查询的 key 都不在 redis 中&#xff0c;数据库中也没有。 一般都是属于非法的请求&#xff0c;比如 id<0&#xff0c;比如可以在 API 入口做一些参数校验。 大量访问不存…

LeeCode题库第二十八题

28.找出字符串第一个匹配项的下标 项目场景&#xff1a; 给你两个字符串 haystack 和 needle &#xff0c;请你在 haystack 字符串中找出 needle 字符串的第一个匹配项的下标&#xff08;下标从 0 开始&#xff09;。如果 needle 不是 haystack 的一部分&#xff0c;则返回 …

亚马逊AI图像模型Nova深度体验(含源代码)(上)

在本系列的上篇中&#xff0c;我们介绍了如何利用Amazon Nova Canvas进行创意图片内容生成&#xff0c;并使用Amazon Bedrock的InvokeModel API进行文本到图像&#xff08;文生图&#xff09;的生成。并且介绍了Nova Canvas提供的广泛的功能&#xff0c;包括图像修复、画布扩展…

【MySQL】第八弹---全面解析数据库表的增删改查操作:从创建到检索、排序与分页

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】【C详解】【Linux系统编程】【MySQL】 目录 1 表的增删改查 1.1 Create 1.1.1 单行数据 全列插入 1.1.2 多行数据 指定列插入 1.1.3 插入否则更新 1.1.4 替…

标量化rknn的输入输出向量转换处理

这是一篇技术探索。yolo11模型生成后&#xff0c;我发现它无法在rknn环境正确识别出目标对象。而在宿主机上&#xff0c;或者直接调用.pt转换过的.onnx模型是可以得到正确结果的。这篇文章对应近乎一天的工作。最终的结论就是。这是一个模型量化的问题&#xff0c;与yolo的版本…

边缘安全加速(Edge Security Acceleration)

边缘安全加速&#xff08;Edge Security Acceleration&#xff0c;简称ESA&#xff09;是一种通过将安全功能与网络边缘紧密结合来提升安全性和加速网络流量的技术。ESA的目标是将安全措施部署到接近用户或设备的地方&#xff0c;通常是在网络的边缘&#xff0c;而不是将所有流…

图表控件Aspose.Diagram入门教程:使用 Python 将 VSDX 转换为 PDF

将VSDX转换为PDF可让用户轻松共享图表。PDF 文件保留原始文档的布局和设计。它们广泛用于演示文稿、报告和文档。在这篇博文中&#xff0c;我们将探讨如何在 Python 中将 VSDX 转换为 PDF。 本文涵盖以下主题&#xff1a; Python VSDX 到 PDF 转换器库使用 Python 将 VSDX 转…

两相四线步进电机的步距角为什么是1.8度

机缘 在CSDN查了好多文章&#xff0c;发现都是用公式来解释1.8的步距角&#xff08;Q&#xff1d;360&#xff0f;MZ&#xff09;&#xff0c;因为转子是50齿&#xff0c;4拍一个循环&#xff0c;所以θ360度/&#xff08;50x4&#xff09;1.8度。估计第一次接触步进电机的什么…

Helix——Figure 02发布通用人形机器人控制的VLA:一组神经网络权重下的快与慢双系统,让两个机器人协作干活

前言 过去一周&#xff0c;我花了很大的心思、力气&#xff0c;把deepseek的GRPO、MLA算法的代码解析通透&#xff0c;比如GRPO与PPO的详细对比&#xff0c;再比如MLA中&#xff0c;图片 公式 代码的一一对应 2.20日晚&#xff0c;无意中刷到figure 02发布Helix的一个演示视频…