基于YOLOv8深度学习的路面标志线检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:路面标志线检测与识别对于道路安全维护、交通流畅性提升和自动驾驶技术发展都具有关键性作用。正确的标志线识别能够协助司机作出合适的行驶决策,减少违章行为,避免交通事故。本文基于YOLOv8深度学习框架,通过2776张图片,训练了一个进行路面标志线检测与识别的目标检测模型,准确率高达92%。并基于此模型开发了一款带UI界面的路面标志线检测与识别系统,可用于实时检测场景中的路面标志线检测与识别,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)保存图片与视频检测结果
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3. 训练结果评估
    • 4. 检测结果识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

路面标志线检测与识别对于道路安全维护、交通流畅性提升和自动驾驶技术发展都具有关键性作用。正确的标志线识别能够协助司机作出合适的行驶决策,减少违章行为,避免交通事故,比如区分公交专用车道、直行车道或转弯车道。此外,斑马线的检测有助于提醒驾驶员注意减速礼让行人,而自行车道的识别则可以提醒驾驶员保持对自行车骑行者的警惕。

自动驾驶技术领域,路面标志线识别是保证自动驾驶系统安全导航的核心功能之一。自动驾驶车辆依赖于对标志线类型和路面状况的准确解读,才能做出正确的行驶决策,如保持车道、转弯或靠边停车。同时,该系统也可以用于智能交通监控系统中,辅助监控道路状况,评估交通设计是否合理,并根据实际车流量调整道路标线设计。
此外,城市规划和维护部门可以利用路面标志线检测与识别系统对城市路面状况进行智能化监控,及时发现和维修损坏的路面标志线,保障道路交通秩序、提升道路使用效率。在紧急情况或临时活动中,该系统也能够辅助交通管理人员快速绘制或更改临时交通标志线以适应特殊需求。
综上所述,路面标志线检测与识别系统不仅对个体驾驶者的行车安全至关重要,而且对智能交通系统的整体效率和未来自动驾驶车辆的成功商用发挥着决定性作用。

博主通过搜集不同路面标识线的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的路面标志线检测与识别系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行13种路面标志线的检测与识别,分别为:['公交专用车道', '黄色标线', '直行车道', '转弯车道', '斑马线', '菱形', '慢行', '左转箭头', '直行箭头', '前进-左转箭头', '前进-右转箭头', '右转箭头', '自行车道']
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
在这里插入图片描述

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。
在这里插入图片描述

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。
在这里插入图片描述

在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

通过网络上搜集关于路面标志线的各类图片,并使用LabelMe标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含2776张图片,其中训练集包含2167张图片验证集包含417张图片测试集包含192张图片部分图像及标注如下图所示。
在这里插入图片描述

在这里插入图片描述

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入RoadMarkingData目录下。
在这里插入图片描述

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\RoadMarkingsDetection\datasets\RoadMarkingData\train
val: E:\MyCVProgram\RoadMarkingsDetection\datasets\RoadMarkingData\valid
test: E:\MyCVProgram\RoadMarkingsDetection\datasets\RoadMarkingData\testnc: 13
names: ["Bus lane", "Yellow marking", "Straight lane", "Turning lane", "Pedestrian crosswalk", "Diamond", "Slow", "Left turn arrow", "Straight ahead arrow", "Forward-left turn arrow", "Forward-right turn arrow", "Right turn arrow", "Bicycle lane"]

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':# Use the modelresults = model.train(data='datasets/RoadMarkingData/data.yaml', epochs=250, batch=4)  # 训练模型# 将模型转为onnx格式# success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型两类目标检测的mAP@0.5已经达到了0.87以上,平均值为0.89,结果还是很不错的。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/3_jpg.rf.98fff907698460f4b3ab53b06101bb61.jpg"# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款路面标志线检测与识别系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【软件】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,回复【软件】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的路面标志线检测与识别系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/219343.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java EE 网络之网络初识

文章目录 1. 网络发展史1.1 独立模式1.2 网络互连1.3 局域网 LAN1.4 广域网 WAN 2. 网络通信基础2.1 IP 地址2.2 端口号2.3 认识协议2.4 五元组2.5 协议分层2.5.1 什么是协议分层2.5.2 分层的作用2.5.3 OSI七层协议2.5.4 TCP/IP五层协议2.5.5 网络设备所在分层 2.6 分装和分用 …

【AI基础设施】智算场景的资源管理系统与未来展望

高性能计算与智算场景 首先澄清两个概念,高性能计算与智算场景,高性能计算主要是面向天气预测、生物计算、材料计算等场景,而最近几年很火的智算主要是面向AI场景的计算,如语音识别、图像识别、自动驾驶等场景,我们可…

【C++11特性篇】一文助小白轻松理解 C++中的【左值&左值引用】【右值&右值引用】

前言 大家好吖,欢迎来到 YY 滴C系列 ,热烈欢迎! 本章主要内容面向接触过C的老铁 主要内容含: 欢迎订阅 YY滴C专栏!更多干货持续更新!以下是传送门! 目录 一.【左值&左值引用】&…

广州华锐互动:VR煤矿特殊工种作业实训帮助提高矿工的操作技能和安全意识

VR煤矿特殊工种作业实训系统为煤矿企业培训提供了全方位的支持,帮助提高矿工的操作技能和安全意识,促进煤矿企业的安全生产。 首先,VR煤矿特殊工种作业实训系统可以提供逼真的虚拟操作环境,使矿工能够身临其境地感受各种工种的作业…

k8syaml提供的几个有意思的功能,Kubernetes在线工具网站

k8syaml.cn 提供的几个有意思的功能。 一、yaml资源快速生成 之前编写operator的helm的时候就需要自己写deployment、service、configmap这些资源,那么多字段也记不清,都是先找个模版,然后copy改改,再看官方文档,添加…

流程图、泳道图的介绍和示例分享,以及自定义元件库的介绍

目录 一. 流程图介绍 二. Processon使用 新建一个流程图 图形的使用 三. 流程图示例 登录界面 门诊业务流程图 住院业务流程图 药房业务流程图 会议OA流程图 四. 泳道图介绍 五. 自定义元件库 5.1 新建一个元件库 5.2 创建元件 5.3 使用自定义元件库 一. 流程图介…

初识SpringSecurity

目录 前言 特点 快速开始 导入依赖 运行项目 访问服务 权限控制 实现UserDetails接口 添加SecurityConfig配置类 测试接口DemoController 设置权限控制authorizeHttpRequests 结果分析 总结 前言 Spring Security是一个强大且高度可定制的身份验证和访问控制框架…

Openwrt源码下载出现“The remote end hung up unexpected”

最近项目原因需要下载openwrt21.02版本源码,花费了很多时间,找到正确方法后,发现可以节省很多时间,记录下过程,方便自己,可能方便他人。 一.问题阐述 openwrt21.02下载链接如下: git clone -…

提升数据分析效率:Amazon S3 Express One Zone数据湖实战教程

前言 什么是 Amazon S3?什么是 S3 Express One Zone?实现概述 技术架构组件实现步骤概览 第一步:构建数据湖的基础第二步:选择并查看数据集第三步:在 Athena 中搭建架构第四步:数据转换与优化第五步&#x…

Windows安装Elasticsearch并结合内网穿透实现公网远程访问

Windows安装Elasticsearch并结合内网穿透实现公网远程访问 系统环境1. Windows 安装Elasticsearch2. 本地访问Elasticsearch3. Windows 安装 Cpolar4. 创建Elasticsearch公网访问地址5. 远程访问Elasticsearch6. 设置固定二级子域名 Elasticsearch是一个基于Lucene库的分布式搜…

vue3.0项目搭建

一、安装vue3脚手架 卸载vue2脚手架 npm uninstall -g vue-cli清除缓存 npm cache clen --force安装最新脚手架 npm install -g vue/cli查看脚手架版本 vue -V 二、构建项目 创建项目 vue create 项目名选择配置 自定义配置,回车 上下键选择Linter / Formatter&a…

《opencv实用探索·十六》opencv直方图计算calcHist函数解析

直方图理解: (对于8位灰度图像亮度/灰度为(0-255),12位灰度图像亮度/灰度为(0-4095)) 以8位图像为例,亮度分为0到255共256个数值,数值越大,代表的亮度越高。其中0代表纯黑色的最暗区域&#xff…

外包干了3个月,技术退步明显。。。

先说一下自己的情况,本科生生,19年通过校招进入广州某软件公司,干了接近4年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测…

索尼(ILCE-7M3)MP4文件只能播放前两分钟修复案例

索尼的ILCE-7M3是一款经典设备,其HEVC编码效果是比较不错的,因此受到很多专业人士的青睐。之前我们说过很多索尼摄像机断电生成RSV文件修复的案例,今天来讲一个特殊的,文件已经正常封装但仅能播放前两分钟多一点的画面。 故障文件…

静态路由原理与配置

文章目录 静态路由原理与配置一、路由器的工作原理1、路由概述2、路由器的工作原理 二、路由表的形成1、路由表2、路由表的形成 三、静态路由和默认路由1、静态路由的缺点2、默认路由(是特殊的静态路由)3、查看路由表 四、路由器转发数据包的封装过程五、…

FreeRtos里的几个中断屏蔽

1、primask 寄存器 PRIMASK用于禁止除NMI和HardFalut外的所有异常和中断,使用方法: cpsid i ; //设置primask (禁止中断) cpsie i ; //清除primask (使能中断) 也可以 movs r0,#1 msr primask r0; //将 1写入p…

力扣刷题-二叉树-二叉树左叶子之和

404 左叶子之和 给定二叉树的根节点 root ,返回所有左叶子之和。 示例 1: 输入: root [3,9,20,null,null,15,7] 输出: 24 解释: 在这个二叉树中,有两个左叶子,分别是 9 和 15,所以返回 24 思路 迭代法 迭代法理解…

Java 第9章 房屋出租系统

设计 如图是系统的分层结构,包括了界面层、业务层和数据层。 单独建包:由于在实际开发过程中,可能会出现管理多个界面的情况,所以界面需要单独建包,其他同理。 开发任务:从界面层深入到业务层&#xff0c…

菜鸟学习日记(python)——匿名函数

Python 使用 lambda 来创建匿名函数。 lambda 函数是一种小型、匿名的内联函数,它可以具有任意数量的参数,但只能有一个表达式。 匿名函数的一般格式如下: lambda 参数列表:表达式 表达式用于计算并返回函数结果 lambda 函数通常用于编写…

基于Java SSM框架实现智能停车场系统项目【项目源码+论文说明】

基于java的SSM框架实现智能停车场系统演示 摘要 本论文主要论述了如何使用JAVA语言开发一个智能停车场管理系统,本系统将严格按照软件开发流程进行各个阶段的工作,采用B/S架构,面向对象编程思想进行项目开发。在引言中,作者将论述…