TrustGeo代码理解(一)main.py

代码链接:https://github.com/ICDM-UESTC/TrustGeo

一、导入各种模块和数据库

# -*- coding: utf-8 -*-
import torch.nnfrom lib.utils import *
import argparse, os
import numpy as np
import random
from lib.model import *
import copy
from thop import profile
import pandas as pd

整体功能是准备运行一个 PyTorch 深度学习模型的环境,具体的功能实现需要查看 lib.utils、lib.model 中的代码,以及整个文件的后续部分。

1、# -*- coding: utf-8 -*-:指定脚本的字符编码为UTF-8。

2、import torch.nn:导入 PyTorch 的神经网络模块,用于定义和训练神经网络。

3、from lib.utils import *从 lib.utils 模块中导入所有内容,这可能包括一些工具函数或辅助函数,用于该脚本或项目的其他部分。

4、import argparse, os:导入 argparse 模块用于解析命令行参数,os 模块用于与操作系统交互。

5、import numpy as np:导入 NumPy 库,用于进行科学计算,特别是多维数组的处理。

6、import random:导入 random 模块,用于生成伪随机数。

7、from lib.model import *:从 lib.model 模块中导入所有内容,这可能包括定义神经网络模型的类等。

8、import copy:导入 copy 模块,用于复制对象,通常用于创建对象的深拷贝

9、from thop import profile从 thop 模块中导入 profile 函数,该函数用于计算 PyTorch 模型的 FLOPs(浮点运算数)和参数数量。(在代码链接中没有找到)

10、import pandas as pd:导入 Pandas 库,用于数据处理和分析,通常用于处理表格型数据。

二、参数初始化(通过命令行参数)

parser = argparse.ArgumentParser()
# parameters of initializing
parser.add_argument('--seed', type=int, default=2022, help='manual seed')
parser.add_argument('--model_name', type=str, default='TrustGeo')
parser.add_argument('--dataset', type=str, default='New_York', choices=["Shanghai", "New_York", "Los_Angeles"],help='which dataset to use')

这部分代码的目的是通过命令行参数设置一些初始化的参数,例如随机数种子、模型名称和数据集名称。这使得在运行脚本时可以通过命令行参数来指定这些参数的值。

1、parser = argparse.ArgumentParser():创建一个 argparse.ArgumentParser 对象,用于解析命令行参数。

2、# parameters of initializing:注释,表示接下来是初始化参数的部分。

3、parser.add_argument('--seed', type=int, default=2022, help='manual seed'):添加一个命令行参数,名称为 '--seed',表示随机数种子,类型为整数,默认值为 2022,help 参数是在命令行中输入 --help 时显示的帮助信息。

4、parser.add_argument('--model_name', type=str, default='TrustGeo'):添加一个命令行参数,名称为 '--model_name',表示模型的名称,类型为字符串,默认值为 'TrustGeo'。

5、parser.add_argument('--dataset', type=str, default='New_York', choices=["Shanghai", "New_York", "Los_Angeles"], help='which dataset to use'):添加一个命令行参数,名称为 '--dataset',表示数据集的名称,类型为字符串,默认值为 'New_York',choices 参数指定了可选的值为 ["Shanghai", "New_York", "Los_Angeles"],用户只能从这三个值中选择。help 参数是在命令行中输入 --help 时显示的帮助信息。

三、训练过程参数设置

# parameters of training
parser.add_argument('--beta1', type=float, default=0.9)
parser.add_argument('--beta2', type=float, default=0.999)
parser.add_argument('--lambda1', type=float, default=7e-3)
parser.add_argument('--lr', type=float, default=5e-3)
parser.add_argument('--harved_epoch', type=int, default=5) 
parser.add_argument('--early_stop_epoch', type=int, default=50)
parser.add_argument('--saved_epoch', type=int, default=200)  

这部分代码的目的是设置一些训练过程中的超参数,例如优化器的动量参数、学习率、权重参数等。这些参数在训练过程中会影响模型的更新和收敛速度。

1、# parameters of training:注释,表示接下来是训练参数的部分。

2、parser.add_argument('--beta1', type=float, default=0.9):添加一个命令行参数,名称为 '--beta1',表示 Adam 优化器的第一个动量(momentum)参数,类型为浮点数,默认值为 0.9。

3、parser.add_argument('--beta2', type=float, default=0.999):添加一个命令行参数,名称为 '--beta2',表示 Adam 优化器的第二个动量参数,类型为浮点数,默认值为 0.999。

4、parser.add_argument('--lambda1', type=float, default=7e-3):添加一个命令行参数,名称为 '--lambda1',表示某个权重参数,类型为浮点数,默认值为 7e-3。

5、parser.add_argument('--lr', type=float, default=5e-3):添加一个命令行参数,名称为 '--lr',表示学习率,类型为浮点数,默认值为 5e-3。

6、parser.add_argument('--harved_epoch', type=int, default=5):添加一个命令行参数,名称为 '--harved_epoch',表示某个 epoch 的值,类型为整数,默认值为 5。

7、parser.add_argument('--early_stop_epoch', type=int, default=50):添加一个命令行参数,名称为 '--early_stop_epoch',表示早停(early stop)的 epoch 数,类型为整数,默认值为 50。

8、parser.add_argument('--saved_epoch', type=int, default=200):  添加一个命令行参数,名称为 '--saved_epoch',表示保存模型的 epoch 数,类型为整数,默认值为 200。

四、模型参数设置

# parameters of model
parser.add_argument('--dim_in', type=int, default=30, choices=[51, 30], help="51 if Shanghai / 30 else")opt = parser.parse_args()
print("Learning rate: ", opt.lr)
print("Dataset: ", opt.dataset)

这部分代码的目的是解析命令行参数,并打印出学习率和数据集名称。--dim_in 参数用于指定输入维度,可以选择是 51 或者 30。

1、# parameters of model:注释,表示接下来是训模型参数的部分。

2、parser.add_argument('--dim_in', type=int, default=30, choices=[51, 30], help="51 if Shanghai / 30 else"):添加一个命令行参数,名称为 '--dim_in',表示输入的维度,类型为整数,默认值为 30。choices 参数指定了可选的值为 [51, 30],用户只能从这两个值中选择。help 参数是在命令行中输入 --help 时显示的帮助信息。

3、opt = parser.parse_args():使用 argparse 解析命令行参数,将结果存储在 opt 变量中

4、print("Learning rate: ", opt.lr):打印学习率,即 opt 对象中的 lr 属性

5、print("Dataset: ", opt.dataset):打印数据集名称,即 opt 对象中的 dataset 属性

五、设置随机种子数

if opt.seed:print("Random Seed: ", opt.seed)random.seed(opt.seed)torch.manual_seed(opt.seed)
torch.set_printoptions(threshold=float('inf'))

这一部分的目的是确保在使用随机数的场景中,每次运行程序得到的随机结果是可复现的。通过设置相同的随机数种子,可以使得每次运行得到相同的随机数序列。

1、如果 opt 对象中的 seed 属性存在(不为 0 或 False 等假值),则执行以下操作:

  • 打印随机数种子的信息。
  • 使用 random 模块设置 Python 内建的随机数生成器的种子。
  • 使用 PyTorch 的 torch 模块设置随机数种子。

2、torch.set_printoptions(threshold=float('inf')):设置 PyTorch 的打印选项,将打印的元素数量限制设置为无穷大,即不限制打印的元素数量。这样可以确保在打印张量时,所有元素都会被打印出来,而不会被省略。

六、过滤所有警告信息

warnings.filterwarnings('ignore')

过滤掉所有警告信息,将警告信息忽略。这通常用于在代码中避免显示一些不影响程序执行的警告信息,以保持输出的清晰。在某些情况下,警告信息可能是有用的,但如果明确知道这些警告对程序执行没有影响,可以选择忽略它们。

七、动态选择运行环境

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print("device:", device)
cuda = True if torch.cuda.is_available() else False
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor

这部分代码的目的是根据硬件环境动态选择运行模型的设备,并选择相应的 PyTorch 张量类型。如果有可用的 GPU,就使用 GPU 运行模型和 GPU 张量类型;否则,使用 CPU 运行模型和 CPU 张量类型。

1、device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu'):创建一个 PyTorch 设备对象,表示运行模型的设备。如果 CUDA 可用(即有可用的 GPU),则使用 'cuda:0' 表示第一个 GPU,否则使用 'cpu' 表示 CPU。

2、print("device:", device):打印设备的信息,即使用的是 GPU 还是 CPU。

3、cuda = True if torch.cuda.is_available() else False:根据 CUDA 是否可用设置一个布尔值,表示是否使用 GPU。如果 CUDA 可用,则 cuda

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/219832.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何发布自定义 npm 组件包

准备工作 1. 注册 npm 账号 还没有 npm 账号?去官网注册: https://www.npmjs.com 需要记住用户名、密码、邮箱,后面需要用到。 2. 查看本地 npm 镜像,如果不是默认的,需要改回来 npm config get registry重置镜像路…

【DataSophon】大数据服务组件之Flink升级

🦄 个人主页——🎐开着拖拉机回家_Linux,大数据运维-CSDN博客 🎐✨🍁 🪁🍁🪁🍁🪁🍁🪁🍁 🪁🍁🪁&am…

什么是POM设计模式?

为什么要用POM设计模式 前期,我们学会了使用PythonSelenium编写Web UI自动化测试线性脚本 线性脚本(以快递100网站登录举栗): import timefrom selenium import webdriver from selenium.webdriver.common.by import Bydriver …

Leetcode 90 子集 II

题意理解: 求一个集合的子集:该集合有重复元素。 集合[1,2,2] []、[1]、[2]、[2]、[12]、[12]、[22]、[122] 子集:[]、[1]、[2]、[12]、[22]、[122]——由于元素有重复需要对子集进行去重操作。 所以此题的难点在于:子集去重 解题…

c++知识总结

一 细碎知识 1.9 I 1.9.1 inline 参考 C语言中头文件中的 static inline 函数以及 __attribute__((always_inline)) 强制内联展开-CSDN博客https://blog.csdn.net/m0_37616597/article/details/104138980 慎用 inline 内联能提高函数的执行效率,为什么不把所有的函数都定…

PHPStorm一站式配置

phpstorm安装好之后,先别急着编码。工欲善其事,必先利其器,配置好下面这些之后让编码事半功倍。 主题 Appearance & Behavior -> Appearance -> Theme 选中 [Light with Light Header] 亮色较为护眼 关闭更新 Appearance & …

迅为RK3568开发板使用OpenCV处理图像-ROI区域-位置提取ROI

在图像处理过程中,我们可能会对图像的某一个特定区域感兴趣,该区域被称为感兴趣区域(Region of Interest, ROI)。在设定感兴趣区域 ROI 后,就可以对该区域进行整体操作。 位置提取 ROI 本小节代码在配套资料“iTOP-3…

怎么做可下载的音频二维码?音频扫码下载的方法

相信音频二维码大家都不陌生,但是很多的二维码扫码后只能够听音乐,无法下载音频到手机,那么这个问题有什么比较简单的处理方法吗?想要制作支持音频下载功能的二维码图片,可以使用在线二维码生成器来完成制作&#xff0…

AI摄影绘画与PS优化:重塑数字艺术的未来

文章目录 《AI摄影绘画与PS优化从入门到精通》内容简介作者简介楚天 目录前言/序言 在科技日新月异的今天,人工智能(AI)已经渗透到我们生活的各个领域,包括艺术创作。AI摄影绘画和Photoshop(PS)优化是这个领…

nodejs配置express服务器,运行自动打开浏览器

查看专栏目录 Network 灰鸽宝典专栏主要关注服务器的配置,前后端开发环境的配置,编辑器的配置,网络服务的配置,网络命令的应用与配置,windows常见问题的解决等。 文章目录 设置方法:1,安装nodej…

vuepress-----25、右侧目录

# 25、vuepress 右侧目录 https://github.com/xuek9900/vuepress-plugin-right-anchor vuepress-plugin-right-anchor English |中文 在用 Vuepress 2.x 编写的文档页面右侧添加 锚点导航栏 # 版本 2.x.x -> Vuepress 2.x -> npm next -> master 分支0…

2023.12.17Linux基础命令

ls -l详细信息 -a所有 springcloud微服务 ctrlalt鼠标左键,从虚拟机中回到本机 执行这两条语句 拿到远程主机的ip地址之后就要试图连接 要实现连接,就要有远程连接的软件 ssh和http一样,也是一种协议 SSH 是 Secure Shell&am…

(4)Linux的Redirect 重定向以及打包与压缩

💭 写在前面 本章仍然是继续对Linux 常用指令进行介绍,将讲解重定向、时间相关的指令、文件查找和打包压缩等指令。我们将初次理解 "Linux下一切皆文件"这一概念,我将通过一个有趣的故事去讲解它。 初识重定向(Redire…

GO编程语言:简洁、高效、强大的开源编程语言

在现代软件开发领域,随着应用复杂度的不断提升,开发人员对编程语言的需求也日益增长。GO编程语言,作为一种简洁、高效且具备强大并发能力的新型开源编程语言,逐渐成为了许多开发者的首选。本文将详细介绍GO语言在哪些项目开发中表…

windows 服务器 怎么部署python 程序

一、要在 Windows 服务器上部署 Python 程序,您需要遵循以下步骤: 安装 Python:首先,在 Windows 服务器上安装 Python。您可以从官方网站(https://www.python.org/downloads/windows/)下载最新的 Python 安…

docker consul 容器的自动发现与注册

consul相关知识 什么是注册与发现 服务注册与发现是微服务架构中不可或缺的重要组件。起初服务都是单节点的,不保障高可用性,也不考虑服务的压力承载,服务之间调用单纯的通过接口访问。直到后来出现了多个节点的分布式架构,起初的…

百度搜索展现服务重构:进步与优化

作者 | 瞭东 导读 本文将简单介绍搜索展现服务发展过程,以及当前其面临的三大挑战:研发难度高、架构能力欠缺、可复用性低,最后提出核心解决思路和具体落地方案,期望大家能有所收货和借鉴。 全文4736字,预计阅读时间12…

虚拟化之安全虚拟化

虚拟化首次引入是在Armv7-A架构中。那时,Hyp模式(在AArch32中相当于EL2)仅在非安全状态下可用。当Armv8.4-A引入时,添加了对安全状态下EL2的支持作为一个可选特性。 当处理器支持安全EL2时,需要使用SCR_EL3.EEL2位从E…

module ‘tensorflow‘ has no attribute XXX 报错解决

问题描述: 粘了别人的tensorflow项目,运行总是报错module ‘tensorflow’ has no attribute什么什么 问题解决: 导入tensorflow的代码如下 import tensorflow as tf此时,某个某块报错,比如下面这个 那么就直接把tf.…

2024年【建筑电工(建筑特殊工种)】报名考试及建筑电工(建筑特殊工种)新版试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年建筑电工(建筑特殊工种)报名考试为正在备考建筑电工(建筑特殊工种)操作证的学员准备的理论考试专题,每个月更新的建筑电工(建筑特殊工种)新版试题祝您顺利通过建筑电工(建筑特殊工种)考试。 1、【单…