【智能算法】11种混沌映射算法+2种智能算法示范【鲸鱼WOA、灰狼GWO算法】

目录

1 主要内容

2 部分代码

3 程序结果

4 下载链接


主要内容

混沌映射算法是我们在智能算法改进中常用到的方法,本程序充分考虑改进算法应用的便捷性,集成了11种混合映射算法,包括Singer、tent、Logistic、Cubic、chebyshev、Piecewise、sinusoidal、Sine、ICMIC、Circle、Bernoulli,基本涵盖了常用到的全部混合映射算法,并采用两种智能算法——鲸鱼WOA和灰狼GWO算法进行改进示范,得到优化前和优化后的对比结果,该程序可方便更换不同映射算法,通过两种算法示范方便新手学习,改进算法可轻松嫁接于其他智能算法中,是不可多得的学习资料!
  • 智能算法优化效果
  1. 收敛速度:算法的收敛速度是衡量其优化效果的重要指标之一。可以通过观察算法在迭代过程中适应度值的变化情况,以及达到收敛所需的迭代次数来评估其收敛速度,较快的收敛速度意味着算法能够更快地找到优化问题的解。
  2. 解的质量:优化算法的目标是找到问题的最优解或近似最优解。因此,解的质量是评估算法优化效果的另一个重要方面。可以通过比较不同算法找到的解的目标函数值、解的精度以及解的稳定性等指标来评估解的质量。
  3. 适应性:智能算法通常具有一定的自适应性,能够在不同问题和环境下进行自我调整和优化。因此,评估算法的适应性也是对比其优化效果的一个重要方面。可以通过观察算法在不同类型的问题、不同的初始条件以及不同的参数设置下的表现来评估其适应性。
  4. 鲁棒性:鲁棒性是指算法在面对噪声、干扰和不确定性时的稳定性和可靠性。评估算法的鲁棒性可以帮助了解其在实际应用中的表现。可以通过在算法中加入噪声、改变问题的约束条件或引入不确定性来观察算法的鲁棒性。
  • 说明
1.为了验证智能算法优劣,需要消除随机性的影响,因此一般考量智能算法的平均值和方差等统计指标,因此大家不要拿单一运行结果作为算法优劣的判据,当然在结果整理中可取效果较好的某次结果作为效果图。
2.混沌映射算法有具体的参数限制,在应用过程中可能需要修正参数才能达到较好的效果,使用过程中建议和其他改进算法结合,如非线性惯性权重、柯西变异等,综合改进算法效果一般要优于单一方法。

部分代码

% initialize position vector and score for the leader
Leader_pos=zeros(1,dim);
Leader_score=inf; %change this to -inf for maximization problems
​
​
%Initialize the positions of search agents
% Positions=initialization(SearchAgents_no,dim,ub,lb);
Positions = repmat(lb, SearchAgents_no, 1)+ialgo(numm,SearchAgents_no,dim) .* repmat((ub-lb), SearchAgents_no, 1);
​
Convergence_curve=zeros(1,Max_iter);
​
t=0;% Loop counter
​
% Main loop
while tfor i=1:size(Positions,1)% Return back the search agents that go beyond the boundaries of the search spaceFlag4ub=Positions(i,:)>ub;Flag4lb=Positions(i,:)function for each search agentfitness=fobj(Positions(i,:));% Update the leaderif fitnessthis to > for maximization problemLeader_score=fitness; % Update alphaLeader_pos=Positions(i,:);endend

程序结果

4 下载链接

见下方联系方式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/219920.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

原生html + vue3 获取引用元素refs - elementUI如何在setup中进行表单校验设置

背景: 原生Html 引入elementPlust vue3 ,需要在vue3 setup里做表单校验,通过el-form refform 的refs元素执行校验。 解决方案1: 保存vue挂载之后实例vm为一个常量,由实例来获取:vm.$refs.form.validate(…

iClient3D 图元操作

1. S3MTilesLayer,S3M(Spatial 3D Model)图层类 S3MTilesLayer,S3M(Spatial 3D Model)图层类,通过该图层实现加载三维切片缓存,包括倾斜摄影模型、BIM模型、点云数据、精细模型、矢量数据、符号等。 那S3MTilesLayer中针对图元的…

AI性能再提升12.5%,ZStack Cube 超融合一体机基于第五代英特尔®至强®可扩展处理器解决方案发布

12月15日,以“Al无处不在,创芯无所不及”为主题的2023英特尔新品发布会暨AI技术创新派对上,云轴科技ZStack与英特尔联合发布基于第五代英特尔 至强 可扩展处理器的 ZStack Cube 超融合一体机解决方案白皮书(简称解决方案&#xff…

二进制枚举算法

二进制 : 也就是只有0和1的进制表示 ; 二进制枚举算法 一个二进制数 x 可以表示 S 的一个子集,某个二进制位i上为0表示没有选i元素,为1表示选了该元素放入子集,比如13为1101就表示选了0,2,3号元素;对于一个长度为N的序列(也就是包含N个元素)有2^N个子…

C++之程序生成

一、C的发展史 截止到2023年12月,C已经更新了很多版本,并在每个版本中修复了bug和添加了新的特性,ISO C委员会每三年会对C进行一次更新: C98:于1998年发布,是最早的国际标准化版本。它包含了面向对象编程…

亚马逊云科技re_Invent 2023产品体验:亚马逊云科技产品应用实践 王炸产品Amazon Q,你的AI助手

本篇文章授权活动官方亚马逊云科技文章转发、改写权,包括不限于在 亚马逊云科技开发者社区, 知乎,自媒体平台,第三方开发者媒体等亚马逊云科技官方渠道 意料之中 2023年9月25日,亚马逊宣布与 Anthropic 正式展开战略合作&#x…

机器学习 | 决策树 Decision Tree

—— 分而治之,逐个击破 把特征空间划分区域 每个区域拟合简单模型 分级分类决策 1、核心思想和原理 举例: 特征选择、节点分类、阈值确定 2、信息嫡 熵本身代表不确定性,是不确定性的一种度量。 熵越大,不确定性越高,…

OpenAI 偷偷在训练 GPT-4.5!?

最近看到有人已经套路出 ChatGPT 当前的版本,回答居然是 gpt-4.5-turbo: 实际试验下,用 starflow.tech,切换到小星 4 全能版(同等官网最新 GPT-4),复制下面这段话问它: What is the…

人工智能在金融与商业领域的智能化变革

导言 随着人工智能技术的不断发展,金融和商业领域正迎来一场智能化的变革。随着人工智能的不断发展,其在金融和商业领域的应用正成为业界瞩目的焦点。本文将深入探讨人工智能在金融和商业应用中的关键技术、应用场景以及对未来的影响。 1. 关键技术与算…

数据结构:队列

数据结构:队列 文章目录 数据结构:队列1.队列常用操作:2.队列的实现3.队列典型应用 ***「队列 queue」是一种遵循先入先出规则的线性数据结构。***队列模拟了排队现象,即新来的人不断加入队列尾部,而位于队列头部的人逐…

ceph的osd盘删除操作和iscsi扩展

ceph的osd盘删除操作 拓展:osd磁盘的删除(这里以删除node1上的osd.0磁盘为例) 1, 查看osd磁盘状态 [rootnode1 ceph]# ceph osd tree ID CLASS WEIGHT TYPE NAME STATUS REWEIGHT PRI-AFF -1 0.00298 root default -3 0.00099 host node10 hdd 0.00…

微服务实战系列之ZooKeeper(下)

前言 通过前序两篇关于ZooKeeper的介绍和总结,我们可以大致理解了它是什么,它有哪些重要组成部分。 今天,博主特别介绍一下ZooKeeper的一个核心应用场景:分布式锁。 应用ZooKeeper Q:什么是分布式锁 首先了解一下&…

云原生向量计算引擎 PieCloudVector:为大模型提供独特记忆

拓数派大模型数据计算系统(PieDataComputingSystem,缩写:πDataCS)在10月24日程序员节「大模型数据计算系统」2023拓数派年度技术论坛正式发布。πDataCS 以云原生技术重构数据存储和计算,「一份存储,多引擎…

C# 基本桌面编程(二)

一、前言 本章为C# 基本桌面编程技术的第二节也是最后一节。前一节在下面这个链接 C# 基本桌面编程(一)https://blog.csdn.net/qq_71897293/article/details/135024535?spm1001.2014.3001.5502 二、控件布局 1 叠放顺序 在WPF当中布局,通…

华为配置OSPF与BFD联动示例

组网需求 如图1所示,SwitchA、SwitchB和SwitchC之间运行OSPF,SwitchA和SwitchB之间的交换机仅作透传功能。现在需要SwitchA和SwitchB能快速感应它们之间的链路状态,当链路SwitchA-SwitchB发生故障时,业务能快速切换到备份链路Swi…

极狐GitLab DevSecOps 之容器镜像安全扫描

容器镜像安全 现状 最近某银行遭受供应链攻击的事件传的沸沸扬扬,安全又双叒叕进入了人们的视野。安全确实是一个非常重要,但是又最容易被忽略的话题。但是现在到了一个不得不人人重视安全,人人为安全负责的时代。尤其以现在非常火爆的云原…

java设计模式-工厂方法模式

1.工厂方法(FactoryMethod)模式的定义 定义一个创建产品对象的工厂接口,将产品对象的实际创建工作推迟到具体子工厂类当中。这满足创建型模式中所要求的“创建与使用相分离”的特点。 2.工厂方法模式的主要优缺点 优点: 用户只需要知道具体工厂的名称…

智能优化算法应用:基于乌燕鸥算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于乌燕鸥算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于乌燕鸥算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.乌燕鸥算法4.实验参数设定5.算法结果6.参考文…

低代码企业级PMO项目管理系统,360度全景透视企业管理视角

在一个崇高的目标支持下,不停地工作,即使慢,也一定会获得成功。 爱因斯坦 ★ 前情概要: 企业级PMO项目管理业务是行业里相对成熟和规范的业务,拥有众多商业套件和标准产品。 然而随着企业数字化建设进入深水区&#…

《Global illumination with radiance regression functions》

总结一下最近看的这篇结合神经网络的全局光照论文 这是一篇2013年TOG的论文。 介绍 论文的主要思想是利用了神经网络的非线性特性去拟合全局光照中的间接光照部分,采用了基础的2层MLP去训练,最终能实现一些点光源、glossy材质的光照渲染。为了更好的理…