「数据结构」二叉树1

🎇个人主页:Ice_Sugar_7
🎇所属专栏:C++启航
🎇欢迎点赞收藏加关注哦!

文章目录

  • 🍉树
  • 🍉二叉树
    • 🍌特殊二叉树
    • 🍌二叉树的性质
    • 🍌存储结构
  • 🍉堆
    • 🍌堆的结构
    • 🍌插入
      • 🥝向上调整算法
        • 🫐时间复杂度分析
    • 🍌删除
      • 🥝向下调整算法
        • 🫐时间复杂度分析
    • 🍌堆的创建(堆的初始化)
    • 🍌堆排序
    • 🍌top k 问题
  • 🍉写在最后

🍉树

●树是一种非线性的数据结构,它是由n(n>=0)个结点组成,具有层次关系
●有一个特殊的结点,称为根结点,根节点没有前驱结点
●除根节点外,其余结点被分成M(M>0)个互不相交的集合,每个集合是一棵子树

🍉二叉树

二叉树一个非空结点的子树为空或者至多两个子树(左子树和右子树)
在这里插入图片描述
从这个图可以看出:

二叉树不存在度大于2的结点
二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

🍌特殊二叉树

满二叉树每一层结点数都达到最大值的二叉树。如果一棵满二叉树有k层,那它结点总数就是2^k-1
完全二叉树最后一层抠掉几个结点的满二叉树,就是一般的完全二叉树(满二叉树是特殊的完全二叉树)

🍌二叉树的性质

二叉树的性质都在下图了:
在这里插入图片描述
在这里插入图片描述

🍌存储结构

二叉树一般使用两种结构存储:顺序结构链式结构
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实使用中只有堆才会使用数组来存储
二叉树顺序存储在物理结构上是一个数组,在逻辑结构上是一颗二叉树
我们的代码是按照其物理结构写的,而具体想实现的函数接口则是根据逻辑结构展开的(往下看入堆、出堆、调整等函数之后,你就能理解这句话了)
在这里插入图片描述

本文讲二叉树的顺序存储结构——堆(正文开始)


🍉堆

堆分为两种:大堆和小堆。

大堆:除了叶子结点外,所有结点的孩子都比自己小
小堆:除了叶子结点外,所有结点的孩子都比自己大

根据堆的逻辑结构可知,大堆是上面的结点(位于较低层次的结点)大,小堆是上面的结点小

🍌堆的结构

堆的物理结构就是顺序表,所以代码基本和顺序表一模一样

typedef int HPDataType;
typedef struct Heap
{HPDataType* _a;int _size;int _capacity;
}Heap;

🍌插入

插入这一步很简单,就直接往数组插入元素(注意检查容量是否足够,并且插入后记得让size加1)
插入后,要对这个元素进行调整,采用向上调整

🥝向上调整算法

假设要建一个小堆,那就要拿它和它的双亲进行比较,如果它比双亲小,就和双亲交换位置。假设数组名为_a,大小为size,那插入的结点下标为size-1,它的双亲在数组中的下标就是(size-1-1)/2
这里要用循环,将插入的结点记为child,当child为0时(即它到了堆顶),循环终止。如果中途经比较后发现不用换位置的话,说明调整好了,直接break跳出循环
在这里插入图片描述
代码如下:

typedef int HPDataType;void Swap(HPDataType* hp1, HPDataType* hp2) {HPDataType tmp = *hp1;*hp1 = *hp2;*hp2 = tmp;
}//小堆向上调整
void AdjustUp(Heap* hp,int child) {assert(hp);int parent = (child - 1) / 2;while (child > 0) {if (hp->_a[child] >= hp->_a[parent]) //孩子比双亲大,退出循环break;else {Swap(&(hp->_a[child]),&(hp->_a[parent]));  //两结点交换child = parent;parent = (parent - 1) / 2;}}
}
🫐时间复杂度分析

因为堆是完全二叉树,而满二叉树也是完全二叉树,为了简化问题,就用满二叉树来证明了(时间复杂度本来看的就是近似值,多几个节点不影响最终结果),下面向下调整算法的时间复杂度也这样处理
假设有n个结点,那就有log(n+1)层,那每次向下调整最多遍历log(n+1)次,总共有n个结点,那么就遍历n*log(n+1)次,时间复杂度就是O(N*logN)


🍌删除

不能直接将数组往前挪一位,因为这样虽然在物理结构(数组)上没什么问题,但是在逻辑结构(完全二叉树)上就有问题了,会打乱结点间的关系(比如原先的兄弟现在变为父子,父子变兄弟)
有一个比较巧妙的解决办法,就是将根结点和尾结点(数组最后一个元素)交换位置,然后将新的尾结点删掉,这样就不会影响到结点间的关系了
删掉后要进行向下调整,这就涉及到向下调整算法了

🥝向下调整算法

现在有一个数组,它有n个元素,从逻辑结构上看成是完全二叉树,我们从根结点开始,通过向下调整算法可以把它调整为一个小堆
这种算法的前提是左右子树必须是一个堆,才能调整

int array[] = {27,15,19,18,28,34,65,49,25,37};

调整过程如图:
在这里插入图片描述
每次调整,先比较该结点两个孩子的大小现在要调整为小堆,就先找出较小的孩子,然后这个孩子和双亲进行比较,若孩子<双亲,就把它和双亲交换位置;反之则说明调整完毕

调整的过程显然也要用循环。我们将双亲结点记为parent,左孩子结点记为child(因为左右孩子下标相差1,没必要用leftchild和rightchild进行区分)。那右孩子就是child + 1,不过由于右孩子可能不存在(当child为叶子结点时可能会有这种情况),所以我们得在循环里面判断一下

这里采用假设法,就是我们先假设左孩子是较小的结点(因为右孩子可能不存在,不方便假设),如果右孩子存在的话,就拿左右孩子进行比较,最后将child赋给较小者
(假设法相比于if语句,可以有效简化代码,具体可以看我之前那篇判断相交链表的题解,or看下面的代码也ok)
文章链接:判断相交链表

那循环的终止条件呢?显然当child>=n的时候就要跳出循环了
代码如下:

void AdjustDown(HPDataType* a,int n,int parent) {  //n为数组大小assert(a);int child = 2 * parent + 1;  //左孩子下标while (child < n) {if (child + 1 < n && a[child+1] <= a[child]) {  //右结点存在并且右孩子比左孩子小child++;  //将child设为右孩子结点,等会儿拿它和双亲进行比较,决定是否交换}if (a[child] < a[parent]) {Swap(&a[child], &a[parent]);parent = child;  //更新双亲结点child = parent * 2 + 1;  //更新孩子结点}elsebreak;  //不用换位置说明调整完毕}
}
🫐时间复杂度分析

在这里插入图片描述
“向下移动”的层数指的是最多要调整几次,即从这个结点开始,一直调整到叶子结点为止(最坏的情况)
从结果可以看出:向下调整的时间复杂度(O(N))比向上调整的小,所以建议使用向下调整


🍌堆的创建(堆的初始化)

建堆既可以建一个空堆,也可以根据一个现成的数组建堆
建空堆就是将数组赋为空指针,然后size和capacity都赋为0。和顺序表初始化一样,不多赘述
这里主要来讲数组建堆
思路是:给堆开辟空间+拷贝+调整
●开空间:数组多大就开多大
●拷贝:使用memcpy将数组的元素拷贝给堆
●调整:向上调整or向下调整

先展示向上调整

void HeapCreate(Heap* hp, HPDataType* a, int n) {assert(hp);assert(a);HPDataType* tmp = (HPDataType*)malloc(sizeof(HPDataType) * n);if (tmp == NULL) {perror("malloc fail");exit(-1);}hp->_a = tmp;hp->_capacity = hp->_size = n;memcpy(hp->_a, a, n * sizeof(HPDataType));  //把数组数据拷贝到堆的数组中int parent = (hp->_size - 1) / 2;for (int i = 1; i < n; i++) {  //  调整建堆AdjustUp(hp, i);}
}

也可以复用刚才写的入堆函数,因为它自带向上调整函数。而且push函数是将数组的元素一个一个放进堆的,这样就不需要memcpy了,代码如下(为方便观察,我把向上调整函数和入堆函数也放在下面):

//小堆向上调整
void AdjustUp(Heap* hp, int child) {assert(hp);int parent = (child - 1) / 2;while (child > 0) {if (hp->_a[child] >= hp->_a[parent]) //孩子比双亲大,退出循环break;else {Swap(hp->_a[child], hp->_a[parent]);  //两结点交换child = parent;parent = (child - 1) / 2;}}
}void HeapPush(Heap* hp, HPDataType x) {assert(hp);//如果满了  那就要扩容if (hp->_capacity == hp->_size) {int newcapacity = hp->_capacity == 0 ? 4 : 2 * hp->_capacity;HPDataType* tmp = (HPDataType*)realloc(hp->_a, newcapacity * sizeof(HPDataType));if (tmp == NULL) {perror("realloc fail");exit(-1);}hp->_a = tmp;hp->_capacity = newcapacity;}hp->_a[hp->_size] = x;hp->_size++;AdjustUp(hp, hp->_size - 1);
}void HeapCreate(Heap* hp, HPDataType* a, int n) {assert(hp);HeapInit(hp);  //初始化为空堆for (int i = 0; i < n; ++i) {HeapPush(hp, a[i]);}
}

由于向上调整的效率不及向下调整,所以建议采用向下调整建堆
向下调整要求左子树和右子树也都是堆,又因为单个叶子结点既可以看作是大堆,也可以看成小堆,所以我们从叶子结点的双亲开始向下调整

比如下面这个数组要建一个大堆

int a[] = {4,3,5,7,2,6,8,65,100,70,32,50,60};

在这里插入图片描述
调整后,红色方框内就是一个大堆了,对于3,5这两个结点而言,左右子树都是大堆,那它们也可以向下调整了
代码如下:

void HeapCreate(Heap* hp, HPDataType* a, int n) {assert(hp);HPDataType* tmp = (HPDataType*)malloc(sizeof(HPDataType) * n);if (tmp == NULL) {perror("malloc fail");exit(-1);}hp->_a = tmp;hp->_capacity = hp->_size = n;memcpy(hp->_a, a, n * sizeof(HPDataType));  //把数组数据拷贝到堆的数组中int parent = (hp->_size - 1 - 1) / 2;  //最后一个结点的双亲结点for (int i = parent; i >= 0;i--) {     //从该结点开始进行向下调整AdjustDown(hp->_a, n, i);}
}

🍌堆排序

现在有一个数组,要把它排成升序
如果建小堆,那么很容易就可以找到最小的元素。但是要找次小元素的时候,把数组剩下的元素看作完全二叉树的话,它们之间的关系会乱掉

●所以要建大堆,建好后最大的元素就在根结点,将它和最后一个结点交换,就把最大的元素排好了
●然后size-1剔除最大的元素,对于剩下的元素,因为根结点的左右子树也都是大堆,可以采用向下调整,调整后可以把第二大的元素移动到堆顶(根结点),再和最后一个结点交换,第二大元素就排好了
●剩下的元素也如法炮制

void HeapSort(int* a, int k) {  //a为给定数组for (int i = (k - 1 - 1) / 2; i >= 0; i--) {   //调整为一个堆AdjustDown(a, k, i);}for (int i = k - 1; i >= 0; i--) {  //采用删除结点的思想,先交换,再调整Swap(a[0], a[i]);AdjustDown(a, i, 0);}
}

排序后得到:
在这里插入图片描述


🍌top k 问题

这个问题就是要找出数组中从大到小(或从小到大)的前k个数,下面以从大到小为例
如果要找从大到小的前k个数,我们可以先从数组中选k个数,建一个大小为k的小堆,然后将数组中剩下的数和堆顶的数进行比较,如果比它大,就替代它,然后向下调整。
这个方法的原理是:放一个比较小的数“卡”在堆顶,类似守门员,比它大的数就能进堆,不断把堆中较小的数踢出去,到最后就留下最大的前k个数

//取最大的前k个
void TopK(HPDataType* pa, int n, int k) {Heap ph;HeapInit(&ph);HeapCreate1(&ph, pa, k);  //建小堆for (int i = k; i < n; i++)  //遍历剩下的元素{if (pa[i] > ph._a[0]) {ph._a[0] = pa[i];AdjustDown(ph._a, k, 0);  //小堆向下调整}}HeapSort(ph._a, k);  //将得到前k数进行排序HeapPrint(&ph);
}

🍉写在最后

以上就是本篇文章的全部内容,如果你觉得本文对你有所帮助的话,那不妨点个小小的赞哦!(比心)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/220276.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Multimodal Chain-of-Thought Reasoning in Language Models语言模型中的多模态思维链推理

Abstract 大型语言模型 (LLM) 通过利用思维链 (CoT) 提示生成中间推理链作为推断答案的基本原理&#xff0c;在复杂推理方面表现出了令人印象深刻的性能。然而&#xff0c;现有的 CoT 研究主要集中在语言情态上。我们提出了 Multimodal-CoT&#xff0c;它将语言&#xff08;文本…

基于Arduino的智能太阳能追光系统(论文+源码)

1. 系统设计 本次的设基于Arduino的智能太阳能追光系统的设计&#xff0c;整体结构如图2.1所示。整个系统包括Arduino开发板&#xff0c;按键模块&#xff0c;太阳能板&#xff0c;X轴电机,Y轴电机&#xff0c;电池充电模块&#xff0c;电源模块&#xff0c;四路光照检测模块等…

网神防火墙后台用户敏感信息泄露漏洞复现

简介 网神防火墙是一款由中国知名网络安全公司启明星辰开发的防火墙产品。它提供了全面的网络安全防护功能,旨在保护企业网络免受各种网络威胁和攻击。 该产品存在用户账号信息泄露漏洞,通过构造特定数据包,获取防火墙管理员登录的账号密码。 漏洞复现 FOFA语法: body=&…

PCL点云处理之点云置平(拟合平面绕中心旋转到绝对水平)(二百二十七)

PCL点云处理之点云置平(绕中心旋转到绝对水平)(二百二十七) 一、什么是点云置平二、算法流程三、算法实现一、什么是点云置平 有时候,我们处理的点云平面并非位于水平面,而是位于某个任一三维平面上,而大多数算法又只能在水平面处理,或者水平面的点云处理是相对更简单…

springcloud:对象存储组件MinIO

类似于FastDFS/HDFS的一个文件存储服务&#xff01; SpringBoot整合MinIO实现分布式文件服务&#xff01; #MinIO简介&#xff1f; Minio 是个基于 Golang 编写的开源对象存储套件&#xff0c;基于Apache License v2.0开源协议&#xff0c;虽然轻量&#xff0c;却拥有着不错的…

Kafka-Kafka基本原理与集群快速搭建(实践)

Kafka单机搭建 下载Kafka Apache Download Mirrors 解压 tar -zxvf kafka_2.12-3.4.0.tgz -C /usr/local/src/software/kafkakafka内部bin目录下有个内置的zookeeper(用于单机) 启动zookeeper&#xff08;在后台启动&#xff09; nohup bin/zookeeper-server-start.sh conf…

图片速览 PoseGPT:基于量化的 3D 人体运动生成和预测(VQVAE)

papercodehttps://arxiv.org/pdf/2210.10542.pdfhttps://europe.naverlabs.com/research/computer-vision/posegpt/ 方法 将动作压缩到离散空间。使用GPT类的模型预测未来动作的离散索引。使用解码器解码动作得到输出。 效果 提出的方法在HumanAct12&#xff08;一个标准但小规…

KSP音频抓包

1. 按照网上其他教程&#xff0c;安装KSP抓音频 Biu~笔记&#xff1a;高通蓝牙ADK&#xff08;38&#xff09;-- KSP in MDE - 大大通(简体站) Biu~笔记&#xff1a;高通蓝牙ADK&#xff08;22&#xff09;--DSP音频链路监听 - 大大通(简体站) <<Biu~笔记&#xff1a;高…

RabbitMQ入门指南(二):架构和管理控制台的使用

专栏导航 RabbitMQ入门指南 从零开始了解大数据 目录 专栏导航 前言 一、RabbitMQ架构 二、RabbitMQ管理控制台的使用 1.Exchange交换机 2.Queue队列 3.绑定Exchange交换机和Queue队列 4.发送消息 5.数据隔离 总结 前言 RabbitMQ是一个高效、可靠的开源消息队列系统…

微信小程序 - 龙骨图集拆分

微信小程序 - 龙骨图集拆分 注意目录结构演示动画废话一下业务逻辑注意点龙骨JSON图集结构 源码分享dragonbones-split.jsdragonbones-split.jsondragonbones-split.wxmldragonbones-split.wxssimgUtil.js 参考资料 注意 只支持了JSON版本 目录结构 演示动画 Spine播放器1.5.…

C语言-数组指针笔试题讲解(1)-干货满满!!!

文章目录 ▶️1.sizeof和strlen的对比&#x1f4af;➡️1.1 sizeof是什么&#xff1f;&#x1f4af;➡️1.2sizeof用法举例&#x1f4af;▶️1.3strlen是什么&#xff1f;&#x1f4af;▶️1.4 strlen函数用法举例&#xff1a;&#x1f4af;▶️1.5 strlen和sizeof的对比&#…

栈(C语言版)

一.栈的概念及结构 栈&#xff1a;一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。 进行数据插入和删除操作的一端 称为栈顶&#xff0c;另一端称为栈底。 栈中的数据元素遵守 后进先出 LIFO &#xff08; Last In First Out &#xff09;的原则。…

人工智能数据挖掘:发掘信息的新境界

导言 人工智能数据挖掘作为信息时代的利器&#xff0c;通过智能算法和大数据技术的结合&#xff0c;为企业、学术研究和社会决策提供了前所未有的洞察力。本文将深入探讨人工智能在数据挖掘领域的应用、技术挑战以及对未来的影响。 1. 人工智能数据挖掘的基本原理 数…

回归预测 | MATLAB实现SABO-LSTM基于减法平均优化器优化长短期记忆神经网络的多输入单输出数据回归预测模型 (多指标,多图)

回归预测 | MATLAB实现SABO-LSTM基于减法平均优化器优化长短期记忆神经网络的多输入单输出数据回归预测模型 &#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现SABO-LSTM基于减法平均优化器优化长短期记忆神经网络的多输入单输出数据回归预测模型 &a…

CSS3 2D变形 过渡 动画

​​​​​ transform(2D变形)概述translate()平移scale()缩放skew()倾斜rotate()旋转transform-origin中心原点 CSS3 2D变形 3D变形 过渡 动画 在CSS3中&#xff0c;动画效果包括4个部分&#xff1a;变形&#xff08;transform&#xff09;、3D变形、过渡&#xff08;transit…

数据结构(Chapter Two -02)—顺序表基本操作实现

在前一部分我们了解线性表和顺序表概念&#xff0c;如果有不清楚可以参考下面的博客&#xff1a; 数据结构(Chapter Two -01)—线性表及顺序表-CSDN博客 首先列出线性表的数据结构&#xff1a; #define MaxSize 50 //定义顺序表最大长度 typedef struct{ElemType data…

数据可视化---双Y轴折线图比较

内容导航 类别内容导航机器学习机器学习算法应用场景与评价指标机器学习算法—分类机器学习算法—回归机器学习算法—聚类机器学习算法—异常检测机器学习算法—时间序列数据可视化数据可视化—折线图数据可视化—箱线图数据可视化—柱状图数据可视化—饼图、环形图、雷达图统…

<软考高项备考>《论文专题 - 15 资源管理(一) 》

1 写作要点 过程定义、作用写作要点、思路规划资源管理是定义如何估算、获取、管理和利用团队以及实物资源的过程。作用:根据项目类型和复杂程度确定适用于项目资源的管理方法和管理程度。资源管理计划的内容、编写的原则&#xff08;考虑资源竞争、稀缺资源、争取资源等&…

SQL进阶理论篇(十二):InnoDB中的MVCC是如何实现的?

文章目录 简介事务版本号行记录的隐藏列Undo LogRead View的工作流程总结参考文献 简介 在不同的DBMS里&#xff0c;MVCC的实现机制是不同的。本节我们会以InnoDB举例&#xff0c;讲解InnoDB里MVCC的实现机制。 我们需要掌握这么几个概念&#xff1a; 事务版本号行记录的隐藏…

TrustZone之其他设备及可信基础系统架构

一、其他设备 最后,我们将查看系统中的其他设备,如下图所示: 我们的示例TrustZone启用的系统包括一些尚未涵盖的设备,但我们需要这些设备来构建一个实际的系统。 • 一次性可编程存储器(OTP)或保险丝 这些是一旦写入就无法更改的存储器。与每个芯片上都包含相同…