智能优化算法应用:基于适应度相关算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于适应度相关算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于适应度相关算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.适应度相关算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用适应度相关算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.适应度相关算法

适应度相关算法原理请参考:https://blog.csdn.net/u011835903/article/details/119946003
适应度相关算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

适应度相关算法参数如下:

%% 设定适应度相关优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明适应度相关算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/220551.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

进程通信知识基础【Linux】——下篇

目录 前文 一,命名管道 创建命名管道 1. getline——c库 2. unlink——系统接口 实践代码 common.hpp client.cpp server.cpp Log.cpp 二,共享内存(system V接口) 1. 创建共享内存 shmget接口 2. 删除共享内存 常见…

Spark编程实验二:RDD编程初级实践

目录 一、目的与要求 二、实验内容 三、实验步骤 1、pyspark交互式编程 2、编写独立应用程序实现数据去重 3、编写独立应用程序实现求平均值问题 4、三个综合实例 四、结果分析与实验体会 一、目的与要求 1、熟悉Spark的RDD基本操作及键值对操作; 2、熟悉使…

【算法与数据结构】LeetCode55、45、跳跃游戏 I 、II

文章目录 一、跳跃游戏I二、跳跃游戏II三、完整代码 所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。 一、跳跃游戏I 思路分析:本题目标是根据跳跃数组的元素,判断最终能够到达数组末端。我们引入了一个跳跃范围…

解锁终端安全的钥匙:深度了解迅软DSE桌面管理系统

随着信息化的快速发展,企业内部计算机终端数量不断攀升,成为网络整体安全管理的关键环节。越来越多的企业认识到终端安全管理的重要性,纷纷采取综合规划来应对这一挑战。为了满足广大用户对桌面终端管理的需求,迅软DSE推出了一套全…

『K8S 入门』二:深入 Pod

『K8S 入门』二:深入 Pod 一、基础命令 获取所有 Pod kubectl get pods2. 获取 deploy kubectl get deploy3. 删除 deploy,这时候相应的 pod 就没了 kubectl delete deploy nginx4. 虽然删掉了 Pod,但是这是时候还有 service&#xff0c…

Python 爬虫之简单的爬虫(三)

爬取动态网页(上) 文章目录 爬取动态网页(上)前言一、大致内容二、基本思路三、代码编写1.引入库2.加载网页数据3.获取指定数据 总结 前言 之前的两篇写的是爬取静态网页的内容,比较简单。接下来呢给大家讲一下如何去…

若依 ruoyi-vue3 集成aj-captcha实现滑块、文字点选验证码

目录 0. 前言0.1 说明 1. 后端部分1.1 添加依赖1.2. 修改 application.yml1.3. 新增 CaptchaRedisService 类1.4. 添加必须文件1.5. 移除不需要的类1.6. 修改登录方法1.7. 新增验证码开关获取接口1.8. 允许匿名访问 2. 前端部分(Vue3)2.1. 新增依赖 cryp…

python【matplotlib】鼠标拖动滚动缩放坐标范围和拖动图例共存

背景 根据前面的博文: python【matplotlib】画图鼠标缩放拖动动态改变坐标轴范围 和Python【Matplotlib】图例可拖动改变位置 两个博文,博主考虑了一下,如何将两者的功能结合起来,让二者共存。 只需根据Python【Matplotlib】鼠标…

PIC单片机项目(4)——基于PIC16F877A的温度光照检测装置

1.功能设计 基于PIC16F877A单片机,使用DS18B20进行温度测量,使用光敏电阻进行光照测量,将测量值实时显示在LCD1602屏幕上,同时可以设定光照阈值和温度阈值。当温度大于阈值,则蜂鸣器报警,当光照小于阈值&am…

ES-脚本

脚本 简单使用 POST product/_update/2 {"script": {"source": "ctx._source.salary1" #将薪水字段的值 1} }预定义变量 POST product/_update/2 {"script": {"lang": "painless","source": "…

[C++] 多态(下) -- 多态原理 -- 动静态绑定

文章目录 1、多态原理2、动态绑定和静态绑定3、单继承和多继承关系的虚函数表3.1 单继承中的虚函数表5.2 多继承中的虚函数表 上一篇文章我们了解了虚函数表,虚函数表指针,本篇文章我们来了解多态的底层原理,更好的理解多态的机制。 [C] 多态…

flask搞个简单登录界面

登录界面 直接放上login.html模板&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Lo…

windows 安装jenkins

下载jenkins 官方下载地址&#xff1a;Jenkins 的安装和设置 清华源下载地址&#xff1a;https://mirrors.tuna.tsinghua.edu.cn/jenkins/windows-stable/ 最新支持java8的版本时2.346.1版本&#xff0c;在清华源中找不到&#xff0c;在官网中没找到windows的下载历史&#xff…

Nginx七层代理,四层代理 + Tomcat多实例部署

目录 1.tomcat多实例部署 准备两台虚拟机 进入pc1 pc2同时安装jdk 进入pc1 pc2安装tomcat PC1配置&#xff08;192.168.88.50&#xff09; 安装tomcat多实例 tomcat2中修改端口 启动tomcat1 tomcat2 分别在三个tomcat服务上部署jsp的动态页面 2.nginx的七层代理&…

记录一次云服务器被攻击事件

今天去登录华为云平台的时候&#xff0c;发现服务器的cpu涨到了百分之九十九&#xff0c;这个也太不正常了&#xff0c;我自己就只部署了一个页面&#xff0c;怎么会飚这么高呢&#xff1f; 然后&#xff0c;我就去找原因&#xff0c;使用top命令&#xff0c;去查看到底是谁占用…

JDK21+HADOOP3.2.2+Windows安装步骤

哈哈哈 最近转战大数据这块了&#xff0c;分享一下hadoop3.2.2的安装步骤 借鉴了不少大佬的文章&#xff0c;如有雷同&#xff0c;都是大佬们的 1.JDK安装 我选择的是JDK21 以下是下载网址和截图&#xff0c;这个没有太多的&#xff0c;一般下载最新的就可以 JDK: Java Down…

【C语言】自定义类型:结构体深入解析(一)

&#x1f308;write in front :&#x1f50d;个人主页 &#xff1a; 啊森要自信的主页 ✏️真正相信奇迹的家伙&#xff0c;本身和奇迹一样了不起啊&#xff01; 欢迎大家关注&#x1f50d;点赞&#x1f44d;收藏⭐️留言&#x1f4dd;>希望看完我的文章对你有小小的帮助&am…

编辑器Sublime text 常用快捷命令 列模式 替换空行

平替notepad 下载可取官网 www.sublimetext.com 据说可以无限试用&#xff0c;没有功能限制 1、快速删除空行 ctrl h选择正则表达式 .*Find输入&#xff1a; ^(\t)*$\nReplace输入&#xff1a;点击Replace All 2、快速选择指定字符 用鼠标选中alt f3修改 3、列编辑模式 ct…

WEB渗透—PHP反序列化(五)

Web渗透—PHP反序列化 课程学习分享&#xff08;课程非本人制作&#xff0c;仅提供学习分享&#xff09; 靶场下载地址&#xff1a;GitHub - mcc0624/php_ser_Class: php反序列化靶场课程&#xff0c;基于课程制作的靶场 课程地址&#xff1a;PHP反序列化漏洞学习_哔哩…

win10环境下git安装和基础操作

简述 关于git的作用就不多赘述了&#xff0c;配合GitHub&#xff0c;达到方便人们日常项目维护和管理&#xff0c;每一次项目增删改查都可以看的清清楚楚&#xff0c;方便团队协作和个人项目日常维护。 下载git 首先我们自然是要到官网下载git&#xff0c;下载地址为https:/…