滑动窗口最大值(LeetCode 239)

文章目录

  • 1.问题描述
  • 2.难度等级
  • 3.热门指数
  • 4.解题思路
    • 方法一:暴力法
    • 方法二:优先队列
    • 方法三:单调队列
  • 参考文献

1.问题描述

给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。

返回滑动窗口中的最大值 。

示例 1:

输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置                最大值
---------------               -----
[1  3  -1] -3  5  3  6  7       31 [3  -1  -3] 5  3  6  7       31  3 [-1  -3  5] 3  6  7       51  3  -1 [-3  5  3] 6  7       51  3  -1  -3 [5  3  6] 7       61  3  -1  -3  5 [3  6  7]      7

示例 2:

输入:nums = [1], k = 1
输出:[1]

提示:

1 <= nums.length <= 10^5
10^4 <= nums[i] <= 10^4
1 <= k <= nums.length

2.难度等级

Hard。

3.热门指数

★★★★☆

出题公司:阿里、腾讯、字节。

4.解题思路

方法一:暴力法

遍历所有的滑动窗口,通过遍历窗口内的所有值获取窗口最大值。

那一共有多少个滑动窗口呢,小学题目,一共可以得到 n-k+1 个滑动窗口。其中 n 为数组长度,k 为滑动窗口大小。

假设 nums = [1,3,-1,-3,5,3,6,7] 和 k = 3,那么窗口数为 n-k+1 = 6。

在这里插入图片描述

时间复杂度: O((n-k+1)k)。

空间复杂度:O(1)。不算结果集占用的内存,使用一个变量表示滑动窗口的最大值,所以空间复杂度为 O(1)。

注意: 该解法在 LeetCode 会「超出时间限制」。

下面以 Golang 为例给出实现。

func maxSlidingWindow(nums []int, k int) []int {var r []intfor i := k; i <= len(nums); i++ {max := slices.Max(nums[i-k:i])r = append(r, max)}return r
}

方法二:优先队列

好一些的做法,使用优先队列(堆)来做。

在一个堆中,根节点是最大(或最小)节点。如果根节点最小,称之为小顶堆(或小根堆),如果根节点最大,称之为大顶堆(或大根堆)。注意堆的左右孩子没有大小的顺序。

我们可以构建维护一个大顶堆,堆顶元素就是滑动窗口中的最大值。每一次窗口滑动的时候,我们都需要将新进入窗口的元素加到堆中。

注意: 因为堆不支持删除指定的元素,删除元素只能将堆顶的元素弹出,所以在移动窗口时,左边离开窗口的元素不着急从堆中删除,而是当堆顶元素不在窗口中时,不断地移除堆顶的元素,直到堆顶的元素出现在滑动窗口中。此时,堆顶元素就是滑动窗口中的最大值。

为了方便判断堆顶元素与滑动窗口的位置关系,我们在堆中存储二元组 (num, index),堆的元素是下标 index,权重是下标对应的值 num。

时间复杂度: 时间复杂度:O(nlog⁡n),其中 n 是数组 nums 的长度。在最坏情况下,数组 nums 中的元素单调递增,那么最终优先队列中包含了所有元素,没有元素被移除。由于将一个元素放入优先队列的时间复杂度为 O(log⁡n),因此总时间复杂度为 O(nlog⁡n)。

空间复杂度: O(n),即为优先队列需要使用的空间。

下面以 Golang 为例给出实现。

// a 表示数组,用于表示堆中元素的权重。
var a []int// 堆,需要实现 heap.Interface 接口。
// 使用 []int 作为堆的存储结构,其中存储数组 nums 的下标。
type hp struct{ sort.IntSlice }
func (h hp) Less(i, j int) bool  { return a[h.IntSlice[i]] > a[h.IntSlice[j]] }
func (h *hp) Push(v interface{}) { h.IntSlice = append(h.IntSlice, v.(int)) }// 注意:heap 包的源码在 Pop 前会将堆顶元素与最后一个元素交换后再调用该函数。
func (h *hp) Pop() interface{}   { s := h.IntSlice; v := s[len(s)-1]; h.IntSlice = s[:len(s)-1]; return v }func maxSlidingWindow(nums []int, k int) []int {a = numsq := &hp{make([]int, k)}for i := 0; i < k; i++ {q.IntSlice[i] = i}heap.Init(q)n := len(nums)r := make([]int, 1, n-k+1)r[0] = nums[q.IntSlice[0]]for i := k; i < n; i++ {heap.Push(q, i)// 当堆顶元素不在窗口中时不断弹出,直至堆顶的元素出现在滑动窗口中。for q.IntSlice[0] <= i-k {heap.Pop(q)}r = append(r, nums[q.IntSlice[0]])}return r
}

方法三:单调队列

能不能在线性时间内求解该问题呢?

我们可以通过一个单调队列保存当前窗口的最大值以及「在窗口最大值后面递减的值」。

为了便于判断队首元素是否超出窗口范围,所以队列中保存数组元素下标。

  1. 首先初始化第一个窗口对应的单调队列。遍历窗口元素:
  • 如果大于等于队尾元素,则删除队尾元素,然后将元素下标存入队尾。
  • 如果小于队尾元素,则直接入队列。
  1. 然后获取队首元素作为第一个窗口的最大值。

  2. 当滑动窗口向右移动时,我们需要把一个新的元素放入队列。放入方式与初始化第一个窗口对应的单调队列相同。

  3. 每移动一次窗口,都需要判断队首元素下标是否已经不在当前窗口,如果不在则移除。

为了可以同时弹出队首和队尾的元素,我们需要使用「双端队列」。

时间复杂度: O(n),其中 n 是数组 nums 的长度。每一个下标恰好被放入队列一次,并且最多被弹出队列一次,因此时间复杂度为 O(n)。

空间复杂度: O(k)。与方法一不同的是,在方法二中我们使用的数据结构是双向的,因此「不断从队首弹出元素」保证了队列中最多不会有超过 k+1 个元素,因此队列使用的空间为 O(k)。

下面以 Golang 为例给出实现:

func maxSlidingWindow(nums []int, k int) []int {// 双端队列。q := []int{}push := func(i int) {for len(q) > 0 && nums[i] >= nums[q[len(q)-1]] {q = q[:len(q)-1]}q = append(q, i)}// 初始化第一个窗口对应的队列。for i := 0; i < k; i++ {push(i)}n := len(nums)r := make([]int, 1, n-k+1)r[0] = nums[q[0]]// 移动窗口。for i := k; i < n; i++ {push(i)// 如果队列首部元素下标不在窗口则移除。if q[0] <= i-k {q = q[1:]}r = append(r, nums[q[0]])}return r
}

参考文献

239. 滑动窗口最大值

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/220614.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Trino权威指南(第二版)】Trino的架构、trino架构组件、 trino连接器架构的细节、trino的查询执行模型

文章目录 一. Trino架构1. 架构概览2. 协调器3. 发现服务4. 工作节点 二. 基于连接器的架构三. 查询执行模型1. 解析—>查询计划2. 查询计划 —> 分布式查询计划3. 运行阶段3.1. 基础概念切片&#xff1a;并行单元page 与 exchange算子pipeline切片的driverOperator 3.2.…

大数据技术14:FlinkCDC数据变更捕获

前言&#xff1a;Flink CDC是Flink社区开发的flink-cdc-connectors 组件&#xff0c;这是⼀个可以直接从 MySQL、PostgreSQL 等数据库直接读取全量数据和增量变更数据的 source 组件。 https://github.com/ververica/flink-cdc-connectors 一、CDC 概述 CDC 的全称是 Change …

深度学习 Day19——P8YOLOv5-C3模块实现

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制 文章目录 前言1 我的环境2 代码实现与执行结果2.1 前期准备2.1.1 引入库2.1.2 设置GPU&#xff08;如果设备上支持GPU就使用GPU,否则使用C…

嵌入式软件测试(黑盒测试)---三年嵌入式软件测试的理解

文章内容为本人这三年来在嵌入式软件测试&#xff08;黑盒&#xff09;上的一些积累吧&#xff0c;说起来也挺快的&#xff0c;毕业三年的时间就这样过去了&#xff0c;在两家公司工作过&#xff08;现在这家是第二家&#xff09;&#xff0c;这几年的测试项目基本都是围绕着嵌…

类型转换(C++)

1.5 类型转换1.5.1 隐式类型转换1.5.2 显示类型转换 1.5 类型转换 类型转换分为隐式转换和显示转换 写C/C代码的时候&#xff0c;有时候不可避免的会使用类型转换&#xff0c;良好的代码风格中应该避免隐式转换&#xff0c;隐式转换有时候会产生不易察觉的问题。 1.5.1 隐式…

翻译: ChatGPT Token消耗粗略计算英文就是除以四分之三

在这个视频中&#xff0c;我想带你快速浏览一些例子&#xff0c;以建立对在软件应用中使用大型语言模型的实际成本的直观感受。让我们来看看。这是一些示例价格&#xff0c;用于从不同的大型语言模型获取提示和回应&#xff0c;这些模型对开发者可用。即&#xff0c;如果你在你…

【MYSQL】-库的操作

&#x1f496;作者&#xff1a;小树苗渴望变成参天大树&#x1f388; &#x1f389;作者宣言&#xff1a;认真写好每一篇博客&#x1f4a4; &#x1f38a;作者gitee:gitee✨ &#x1f49e;作者专栏&#xff1a;C语言,数据结构初阶,Linux,C 动态规划算法&#x1f384; 如 果 你 …

【Go】基于GoFiber从零开始搭建一个GoWeb后台管理系统(四)用户管理、部门管理模块

第一篇&#xff1a;【Go】基于GoFiber从零开始搭建一个GoWeb后台管理系统&#xff08;一&#xff09;搭建项目 第二篇&#xff1a;【Go】基于GoFiber从零开始搭建一个GoWeb后台管理系统&#xff08;二&#xff09;日志输出中间件、校验token中间件、配置路由、基础工具函数。 …

第三讲GNSS相关时间系统和转换 第四讲观测值的产生和分类 | GNSS(RTK)课程学习笔记day2

说明&#xff1a;以下笔记来自计算机视觉life吴桐老师课程&#xff1a;从零掌握GNSS、RTK定位[链接]&#xff0c;从零掌握RTKLIB[链接]。非原创&#xff01;且笔记仅供自身与大家学习使用&#xff0c;无利益目的。 第三讲 GNSS相关时间系统和转换 GPS卫星的位置在时间过程中是…

Java基础语法之内部类

什么是内部类 就是在一个类中又定义了另一个类 分类 实例内部类 即未被static修饰的内部类 1.外部类中的任何成员都可以在内部类里面直接访问&#xff0c;不管这个成员是什么权限 2.内部类对象的创建必须是在有外部类成员的前提下 这是错误的&#xff0c;那如何实例化呢&a…

你知道在MyBatis中传参的#{}和${}的区别吗???

首先我们先将其区别列举出来&#xff1a; 首先演示sql注入&#xff1a; 基于上两篇博客的准备工作&#xff0c;继续开发&#xff1a;MyBatis的删除、修改、插入操作&#xff01;&#xff01;&#xff01;-CSDN博客 #{}的使用 UserMapper.java: User testLogin(User user); U…

时序预测 | Python实现GRU-XGBoost组合模型电力需求预测

时序预测 | Python实现GRU-XGBoost组合模型电力需求预测 目录 时序预测 | Python实现GRU-XGBoost组合模型电力需求预测预测效果基本描述程序设计参考资料预测效果 基本描述 该数据集因其每小时的用电量数据以及 TSO 对消耗和定价的相应预测而值得注意,从而可以将预期预测与当前…

手把手教你搭建谷歌Gemini

前言 谷歌上周推出了一款名为 Gemini 的多模态大模型&#xff0c;并且现在发布了免费开放的 Gemini API 供开发者使用。根据谷歌提供的定价信息&#xff0c;Gemini 有两种收费方式。免费版本每分钟可以进行 60 次请求&#xff0c;足够满足个人用户的需求。收费版本目前暂不可用…

【无语】Microsoft Edge 浏览器不显示后台返回的数值数据

Microsoft Edge 禁用 JSON 视图 写在前面禁用 JSON 视图 写在前面 遇到一个有意思的事情&#xff0c;在用 Microsoft Edge 浏览器发送请求测试时发现&#xff0c;后端返回的数值数据没有正常展示&#xff0c;而是类似查看源码的结果&#xff0c;只显示了一个行号1&#xff0c;…

visual stdio code运行vue3

npm init vuelatest 该命令初始化vue项目 使用visual stdio code创建vue项目 ,这边是vue-project文件夹 vs code打开项目 vscode操作vue项目 vscode操作vue项目

Java 数据结构篇-实现二叉搜索树的核心方法

&#x1f525;博客主页&#xff1a; 【小扳_-CSDN博客】 ❤感谢大家点赞&#x1f44d;收藏⭐评论✍ 文章目录 1.0 二叉搜索树的概述 2.0 二叉搜索树的成员变量及其构造方法 3.0 实现二叉树的核心接口 3.1 实现二叉搜索树 - 获取值 get(int key) 3.2 实现二叉搜索树 - 获取最小…

大创项目推荐 深度学习 大数据 股票预测系统 - python lstm

文章目录 0 前言1 课题意义1.1 股票预测主流方法 2 什么是LSTM2.1 循环神经网络2.1 LSTM诞生 2 如何用LSTM做股票预测2.1 算法构建流程2.2 部分代码 3 实现效果3.1 数据3.2 预测结果项目运行展示开发环境数据获取 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天…

升华 RabbitMQ:解锁一致性哈希交换机的奥秘【RabbitMQ 十】

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 升华 RabbitMQ&#xff1a;解锁一致性哈希交换机的奥秘【RabbitMQ 十】 前言第一&#xff1a;该插件需求为什么需要一种更智能的消息路由方式&#xff1f;一致性哈希的基本概念&#xff1a; 第二&…

很抱歉,Midjourney,但Leonardo AI的图像指导暂时还无人能及…至少目前是这样

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

【VScode】设置语言为中文

1、下载安装好vscode 2、此时可看到页面为英文&#xff0c;为方便使用可切换为中文 3、键盘按下 ctrlshiftP 4、在输入框内输入configure display language 5、选择中文&#xff0c;restart即可&#xff08;首次会有install安装过程&#xff0c;等待安装成功后重启即可&am…