深入理解——快速排序

目录

💡基本思想

💡基本框架

💡分割方法

⭐Hoare版本

⭐挖坑法

⭐前后指针法

💡优化方法

⭐三数取中法

⭐小区间内使用插入排序

💡非递归实现快速排序

💡性能分析


💡基本思想

任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列左子序列中所有元素均小于基准值右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。

💡基本框架

// 假设按照升序对array数组中[left, right)区间中的元素进行排序
void QuickSort(int* array, int left, int right)
{if(right - left <= 1)return;// 按照基准值对array数组的 [left, right)区间中的元素进行划分int div = partion(array, left, right);// 划分成功后以div为边界形成了左右两部分 [left, div) 和 [div+1, right)// 递归排[left, div)QuickSort(array, left, div);// 递归排[div+1, right)QuickSort(array, div+1, right);
}

这是快速排序递归实现的主框架,可以发现与二叉树的递归十分相似,在递归时可以想想二叉树的递归规则。

💡分割方法

⭐Hoare版本

这是Hoare于1962年提出的一种二叉树结构的交换排序方法

这个方法的思想就是R找比key小的数L找比key大的数,然后将R和L对应的数交换,当R和L相遇时,将R和L对应的数与key交换,最终使得比key大的数都在key的右边,比key小的数都在key的左边。

这里其实我们保存的时基准值的下标,记为keyi,这样做是为了方便交换,不然交换时只是与key这个临时变量发生了交换而没有影响到原来的数组里的数。

这里其实还有几个疑点:

  • 当a[left],a[right]与a[keyi]相等时,怎么办?这里的处理方法其实就是不管它,直接继续原来的过程就可以了,最终两边排序时都会将这个数放到合理的位置。
  • 为什么当R与L相遇时,它们所对应的数一定比a[keyi]小?要得到这个结论,必须要R先开始走,当R和L相遇时,有两种情况,一是L动的时候遇见R,此时R由于先走且一直在找比基准值小的数,所以当R停下时,R对应的数一定是小于等于基准值,L找比基准值大的数,一直没有找到,遇见R就停下来;二是R动的时候遇见L,R没有找到比key小的,所以一直走,又因为L一直在找比基准值大的数,所以当L停下时,L对应的数一定大于基准值,因此,只要R先走,R和L相遇时,对应的数一定比a[keyi]小。

⭐挖坑法

所谓挖坑法,就是第一次将基准值的位置设为坑(hole),然后R找比key小的数,填入到坑中,并使R对应的位置成为新的坑,然后L找比key大的数,填入到坑中,并使L对应的位置成为新的坑,再重复进行这个过程,当R和L相遇时,此时它们所对应的位置一定是一个坑,然后再将key填入到坑中,此时key左边的数一定比它小,key右边的数一定比他大。

这个方法相较于hoare的方法更加好理解,但是性能上并没有太大的变化。

//挖坑法
int PartSort(int* a, int begin, int end)
{int midi = GetMidi(a, begin, end);swap(&a[begin], &a[midi]);int key = a[begin];int hole = begin;while (begin < end){//右边找小,填到左边的坑while (begin < end && a[end] >= key){end--;}a[hole] = a[end];hole = end;//左边找大,填到右边的坑while (begin < end && a[begin] <= key){begin++;}a[hole] = a[begin];hole = begin;}a[hole] = key;return hole;
}

⭐前后指针法

这个方法就是

  1. cur遇到比key大的数,cur++;
  2. cur遇到比key小的数,prev++,交换cur与prev位置的值,cur++。
  3. 当cur超出数组边界时,将prev位置的值与key位置的值交换。
int PartSort(int* a, int begin, int end)
{int midi = GetMidi(a, begin, end);swap(&a[begin], &a[midi]);int keyi = begin;int prev = begin;int cur = begin + 1;while (cur <= end){if (a[cur] < a[keyi] && ++prev != cur)//自身交换减少了{swap(&a[prev], &a[cur]);}cur++;}swap(&a[keyi], &a[prev]);keyi = prev;return prev;
}

💡优化方法

⭐三数取中法

所谓三数取中法,其实取的是三个数中的中位数,将这个数作为基准值,能够避免某些极端情况的出现(比如数组已经接近有序)。

⚠注:这是针对基数选取进行的优化,另外还有随机数法选数,在这里就不过多介绍了。

int GetMidi(int* a, int begin, int end)
{int midi = (begin + end) / 2;//取中位数if (a[begin] <= a[midi]){if (a[midi] <= a[end]){return midi;}else {if (a[begin] <= a[end])return end;elsereturn begin;}}else   //midi begin{if (a[begin] >= a[end]){if (a[midi] >= end){return midi;}elsereturn end;}elsereturn begin;}
}

⭐小区间内使用插入排序

在递归到较小区间时,如果仍然使用快速排序,会造成时间上的浪费,假如这个区间内有7个数,那就要递归7次才能得到这个7个数的有序序列。

 if(end-begin+1 <= 10)
{//某个区间内的小规模排序直接插入排序//进行插入排序InsertSort(arr,end-begin+1);return;
}

💡非递归实现快速排序

非递归实现方法其实与递归的方法类似,但是需要借助栈这个数据结构(避免其他方法造成栈溢出)。

每次将要排序的区间的起始位置入栈,然后排序时再取栈顶的前两个元素作为一个排序区间进行快速排序,然后依次对key的左区间、右区间进行这样的操作,最终得到有序序列。

void QuickSortNonR(int* a, int begin, int end)
{ST s;STInit(&s);STPush(&s, end);STPush(&s, begin);while (!STEmpty(&s)){int left = STTop(&s);STPop(&s);int right = STTop(&s);STPop(&s);int keyi = PartSort(a, left, right);// [left, keyi-1] keyi [keyi+1, right]if (left < keyi - 1){STPush(&s, keyi - 1);STPush(&s, left);}if (keyi + 1 < right){STPush(&s, right);STPush(&s, keyi + 1);}}STDestroy(&s);
}

💡性能分析

  • 时间复杂度:最差O(N^2),最好O(NlogN),平均O(NlogN)
  • 空间复杂度:O(logN),因为递归时创建的栈帧(申请的空间)没有销毁,递归的深度为logN
  • 稳定性:不稳定
  • 特点:数据越乱排序越快

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/220859.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ros2机器人在gazebo中移动方案

原文连接Gazebo - Docs: Moving the robot (gazebosim.org) 很重要的地方&#xff1a;使用虚拟机运行Ubuntu的时候&#xff0c;需要关闭”加速3D图形“的那个选项&#xff0c;否则gazebo无法正常显示。 Moving the robot&#xff08;使用命令移动机器人示例&#xff09; In t…

小新Air-14 Plus 2021款AMD ACN版(82L7)原装出厂Win11系统镜像

LENOVO联想笔记本开箱状态原厂Windows11系统包 链接&#xff1a;https://pan.baidu.com/s/1D_sYCJAtOeUu9RbTIXgI3A?pwd96af 提取码&#xff1a;96af 联想小新AIR14笔记本电脑原厂系统自带所有驱动、出厂主题壁纸、Office办公软件、联想电脑管家等预装程序 所需要工具&am…

OpenAI 疑似正在进行 GPT-4.5 灰度测试!

‍ 大家好&#xff0c;我是二狗。 今天&#xff0c;有网友爆料OpenAI疑似正在进行GPT-4.5灰度测试&#xff01; 当网友询问ChatGPT API调用查询模型的确切名称是什么时&#xff1f; ChatGPT的回答竟然是 gpt-4.5-turbo。 也有网友测试之后发现仍然是GPT-4模型。 这是有网友指…

飞天使-k8s-知识点1-kubernetes架构简述

文章目录 名词功能要点 k8s核心要素CNCF 云原生框架简介k8s组建介绍 名词 CI 持续集成, 自动化构建和测试&#xff1a;通过使用自动化构建工具和自动化测试套件&#xff0c;持续集成可以帮助开发人员自动构建和测试他们的代码。这样可以快速检测到潜在的问题&#xff0c;并及早…

[ CTF ]【天格】战队WriteUp-第七届“强网杯”全国安全挑战赛

第七届“强网杯”全国安全挑战赛 2023.12.16~2023.12.17 文章目录 【Misc】Pyjail ! Its myFILTER !!!easyfuzz谍影重重2.0签到Pyjail ! Its myRevenge !!!server_8F6C72124774022B.py 问卷调查 【Reverse】ezre 【Web】happygame 【强网先锋】石头剪刀布TrieSpeedUpezreez_fmt…

Gazebo11更新安装

ROS Melodic版本安装的是Gazebo9&#xff0c;Gazebo 最新版本是11 dpkg -l | grep gazebo 出现的是 gazebo9 相关的插件&#xff0c;需要卸载全部插件。 sudo apt-get remove gazebo9 gazebo9-common gazebo9-plugin-base libgazebo9:amd64 libgazebo9-dev:amd64 ros-melodic…

SpringCloud源码探析(十二)-基于SpringBoot开发自定义中间件

1.概述 中间件是一种介于操作系统和应用软件之间&#xff0c;为应用软件提供服务功能的软件&#xff0c;按功能划分有消息中间件&#xff08;Kafka、RocketMQ&#xff09;、通信中间件&#xff08;RPC通信中间件&#xff0c;dubbo等&#xff09;&#xff0c;应用服务器等。中间…

什么是 DDoS ?如何识别DDoS?怎么应对DDOS攻击

什么是DDOS攻击 DDoS攻击&#xff08;Distributed Denial of Service Attack&#xff09;即分布式拒绝服务攻击&#xff0c;是一种利用分布式网络来发起大量的请求&#xff0c;占用目标服务器或网络资源的攻击行为。这种攻击方式可以瘫痪目标系统&#xff0c;导致其无法正常提供…

每日一题,二维平面

给你 二维 平面上两个 由直线构成且边与坐标轴平行/垂直 的矩形&#xff0c;请你计算并返回两个矩形覆盖的总面积。 每个矩形由其 左下 顶点和 右上 顶点坐标表示&#xff1a; 第一个矩形由其左下顶点 (ax1, ay1) 和右上顶点 (ax2, ay2) 定义。 第二个矩形由其左下顶点 (bx1, …

vscode颜色主题插件one dark Pro安装

1.点击扩展图标→搜索“one dark Pro”→第一个点击安装 2.安装成功后&#xff0c;不要忘了点击设置颜色主题 3.看下效果&#xff1a;

如何获取光标在 textarea 中的位置

如何获取光标在 textarea 中的位置 这里的位置不是指光标所在的字符数位置&#xff0c;而是相对 textarea 的向上向左的大体像素位置。 你可以通过 textarea.selectionStart() 来获取光标在 textarea 文本中的字符位置&#xff0c;比如在第几个字符上。 一、如何获取大体的像…

YOLOv5改进 | 注意力篇 | DiverseBranchBlock(DBB)多元分支模块(有效涨点)

一、本文介绍 本文带来的改进机制是YOLOv5模型与多元分支模块&#xff08;Diverse Branch Block&#xff09;的结合&#xff0c;Diverse Branch Block (DBB) 是一种用于增强卷积神经网络性能的结构重新参数化技术。这种技术的核心在于结合多样化的分支&#xff0c;这些分支具有…

eclipse中基于maven构建的web项目pom.xml中指定的jar包无法发布到tomcat中

eclipse运行maven web项目报错&#xff1a; 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 信息: Star…

vp与vs联合开发-通过FrameGrabber连接相机

添加控件 1.CogRecordDisplay 控件 用于显示图像 初始化相机对象方法 //启动窗体时 调用初始化相机方法 //封装相机关闭方法 //窗体关闭时 调用相机关闭方法 拍照 设置采图事件 // 保存图像 设置曝光按钮事件 1.可变参数

C++刷题 -- KMP算法

C刷题 – KMP算法 文章目录 C刷题 -- KMP算法1.算法讲解2.算法实现 https://leetcode.cn/problems/find-the-index-of-the-first-occurrence-in-a-string/description/ 1.算法讲解 KMP算法是一种字符串匹配算法&#xff0c;当出现字符串不匹配时&#xff0c;可以记录一部分之…

2024 年 8 个顶级开源 LLM(大语言模型)

如果没有所谓的大型语言模型&#xff08;LLM&#xff09;&#xff0c;当前的生成式人工智能革命就不可能实现。LLM 基于 transformers&#xff08;一种强大的神经架构&#xff09;是用于建模和处理人类语言的 AI 系统。它们之所以被称为“大”&#xff0c;是因为它们有数亿甚至…

Python tkinter 初探Toplevel控件搭建父子窗口

目录 Toplevel控件搭建父子窗口 最简明的父子窗口框架 改进一&#xff1a;屏蔽和开放按钮 改进二&#xff1a;子窗口始终在主窗口之上 改进三&#xff1a;增加子窗口的关闭协议 改进四&#xff1a;使子窗口长获焦点 总结 Toplevel控件搭建父子窗口 最近&#xff0c;用P…

EasyExcel合并相同内容单元格及动态标题功能的实现

一、最初版本 导出的结果&#xff1a; 对应实体类代码&#xff1a; import com.alibaba.excel.annotation.ExcelProperty; import com.alibaba.excel.annotation.write.style.ColumnWidth; import com.alibaba.excel.annotation.write.style.ContentLoopMerge; import com.al…

【TB作品】51单片机,具有报时报温功能的电子钟

2.具有报时报温功能的电子钟 一、功能要求: 1.显示室温。 2.具有实时时间显示。 3.具有实时年月日显示和校对功能。 4.具有整点语音播报时间和温度功能。 5.定闹功能,闹钟音乐可选。 6.操作简单、界面友好。 二、设计建议: 1.单片机自选(C51、STM32或其他单片机)。 2.时钟日历芯…

第十七章 爬虫scrapy登录与中间件2

文章目录 数据盘区太快会报错&#xff0c;setting中配置延迟 连接提取器