智能优化算法应用:基于水基湍流算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于水基湍流算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于水基湍流算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.水基湍流算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用水基湍流算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.水基湍流算法

水基湍流算法原理请参考:https://blog.csdn.net/u011835903/article/details/121785889
水基湍流算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

水基湍流算法参数如下:

%% 设定水基湍流优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明水基湍流算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/221548.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MongoDB的原子操作findAndReplace、findOneAndDelete和deleteMany

本文主要介绍MongoDB的原子操作findAndReplace、findOneAndDelete和deleteMany。 目录 MongoDB的原子操作一、findAndReplace二、findOneAndDelete三、deleteMany MongoDB的原子操作 MongoDB的原子操作指的是在单个操作中对数据库的数据进行读取和修改,并确保操作是…

OpenHarmony应用开发环境搭建指南

OpenHarmony的应用开发主要是基于Deveco Studio(目前只支持Windows及Mac平台)搭配相应的SDK进行,现对开发环境的搭建进行说明。 1:Deveco下载安装 下载对应平台的安装包即可。接下来以Windows平台为例,进行开发环境的搭建。 下载…

快速入门 — — 在Moonbeam上开发

访问熟悉的以太坊工具是一回事,获得顶级支持、拥有构建突破性跨链应用程序的资源是另一回事。 Moonbeam汇集了通过集成互操作性解决方案访问任何链的能力、具有完全以太坊兼容性的理想开发环境,以及使用Substrate在波卡上安全扩展的能力。 开始在Moonb…

AttributeError: module ‘_winapi‘ has no attribute ‘SYNCHRONIZE‘解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

使用包、Crate 和模块管理项目(下)

1、使用 use 关键字将路径引入作用域 在之前的示例中我们引用模块中的函数或者结构体之类的,都是需要用到相对路径或者绝对路径去引用,然尔在这里,有一种方法可以简化这个过程。我们可以使用 use 关键字创建一个短路径,然后就可以…

惯性导航基础知识学习---04惯导设备的使用

🌈武汉大学惯性导航课程合集是入门惯导的精品课程~ 作为导航路上的鼠鼠我,要开始学习惯性导航了~ 需要达到的要求是大致了解惯导的原理等~ 后期会陆续更新惯导相关的知识和笔记等~ 🐬 本blog为 武汉大学惯性导航课程 的记录~ 感谢团队提供的开…

mac电脑安装虚拟机教程

1、准备一台虚拟机,安装CentOS7 常用的虚拟化软件有两种: VirtualBoxVMware 这里我们使用VirtualBox来安装虚拟机,下载地址:Downloads – Oracle VM VirtualBox 001 点击安装 002 报错:he installer has detected an…

计网02-计算机网络参考模型

一、OSI七层参考模型 1、分层的思想 分层模型用于网络协议的设计方法,本质是将网络节点间复杂的通信问题分成若干简单的问题逐一解决,通过网络的层次去找问题,将复杂问题简单化。 2、OSI参考模型 由于早期计算机厂商使用的是私有的网络模…

map|动态规划|单调栈|LeetCode975:奇偶跳

作者推荐 【贪心算法】【中位贪心】.执行操作使频率分数最大 涉及知识点 单调栈 动态规划 map 题目 给定一个整数数组 A,你可以从某一起始索引出发,跳跃一定次数。在你跳跃的过程中,第 1、3、5… 次跳跃称为奇数跳跃,而第 2、…

【GoLang】哪些大公司正在使用Go语言

你见过哪些令你膛目结舌的代码技巧? 文章目录 你见过哪些令你膛目结舌的代码技巧?前言:哪些大公司正在使用Go语言谷歌(Google):脸书(Facebook):亚马逊(Amazon…

LVS+keepalived小白都看得懂也不来看?

1 高可用集群 1.1 一个合格的集群应该具备的特性 1.负载均衡 LVS Nginx HAProxy F5 2.健康检查(使得调度器检查节点状态是否可以正常运行,调度器(负载均衡器)也要做健康检查)for调度器/节点服务器 keeplived hearb…

轻度听力损失的儿童需要早期干预吗?

一些宝宝在做听力筛查时总是不通过,进一步听力诊断发现宝宝有轻度的听力损失,刚知道这个消息时,家长可担心了,总想着宝宝是不是听不到啊?但是一段时间后,有些家长又会忽略宝宝的听力问题,因为部…

系列十四(面试)、谈谈你对StackOverflowError的理解?

一、StackOverflowError 1.1、概述 StackOverflowError是栈内存溢出的意思。栈中主要存储的是8种基本数据类型 引用类型 实例方法,栈的空间也是有限的,当存储进栈中的容量大于栈的最大容量时,就会报StackOverflowError的错误。 1.2、案例 …

Node.js使用Express框架写服务端接口时,如何将接口拆分到不同文件中

项目目录结构说明: node.js连接mysql数据库步骤可参考:Node.js 连接 MySQL | 菜鸟教程 1、拆分之前的写法,未区分模块,所有接口api都写在了入口文件app.js中; 需求:想要将接口api拆分成根据不同的业务模块…

大型语言模型:RoBERTa — 一种稳健优化的 BERT 方法

slavahead 一、介绍 BERT模型的出现BERT模型带来了NLP的重大进展。 BERT 的架构源自 Transformer,它在各种下游任务上取得了最先进的结果:语言建模、下一句预测、问答、NER标记等。 尽管 BERT 性能出色,研究人员仍在继续尝试其配置&#xff0…

旅游景区项目信息化建设运营方案:PPT47页,附下载

关键词:智慧景区解决方案,智慧景区建设,智慧景区开发与管理,智慧景区建设的意义,智慧景区管理 一、旅游景区项目信息化建设背景 1、旅游业发展迅速:随着旅游业的不断发展,游客对旅游体验的需求…

多级缓存:亿级流量的缓存方案

文章目录 一.多级缓存的引入二.JVM进程缓存三.Lua语法入门四.多级缓存1.OpenResty2.查询Tomcat3.Redis缓存预热4.查询Redis缓存5.Nginx本地缓存6.缓存同步 一.多级缓存的引入 传统缓存的问题 传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未…

【LeetCode刷题】--245.最短单词距离III

245.最短单词距离III class Solution {public int shortestWordDistance(String[] wordsDict, String word1, String word2) {int len wordsDict.length;int ans len;if(word1.equals(word2)){int prev -1;for(int i 0;i<len;i){String word wordsDict[i];if(word.equa…

Xcode 恢复Discard Changes

当开发的时候&#xff0c;Discard All Changes后 文件的修改都被放弃了&#xff0c;怎么才可以撤销更改呢 Xcode和Git没有这个功能&#xff0c;Finder可以实现 首先我们先退出Xcode用TextEdit打开你想恢复的文件转到文件 > 还原到 > 浏览所有版本...选择你想恢复的版本即…

Notepad++:多行数据操作

1&#xff09;删除关键字之后&#xff08;或之前&#xff09;的所有字符 删除s之后&#xff08;包含s&#xff09;的所有内容&#xff1b;快捷键&#xff1a;s.*$ 替换成功 删除s之前&#xff08;包含s&#xff09;的所有内容&#xff1b;快捷键&#xff1a;^.*s 2&#xff09…