管理类联考——数学——真题篇——按知识分类——代数——数列

【等差数列
⟹ \Longrightarrow 通项公式: a n = a 1 + ( n − 1 ) d = a m + ( n − m ) d = n d + a 1 − d = A n + B a_n= a_1+(n-1)d =a_m+(n-m)d=nd+a_1-d=An+B an=a1+(n1)d=am+(nm)d=nd+a1d=An+B ⟹ \Longrightarrow A = d , B = a 1 − d A=d,B=a_1-d A=dB=a1d
⟹ \Longrightarrow 求和公式: S n = n ( a 1 + a n ) 2 = n a n + 1 2 ( n 为偶数时,可虚拟小数) = n a 1 + n ( n − 1 ) 2 d = d 2 n 2 + ( a 1 − d 2 ) n = C n 2 + D n S_n=\frac{n(a_1+a_n)}{2}=na_{\frac{n+1}{2}}(n为偶数时,可虚拟小数)=na_1+\frac{n(n-1)}{2}d=\frac{d}{2}n^2+(a_1-\frac{d}{2})n=Cn^2+Dn Sn=2n(a1+an)=na2n+1n为偶数时,可虚拟小数)=na1+2n(n1)d=2dn2+(a12d)n=Cn2+Dn ⟹ \Longrightarrow C = d 2 , D = a 1 − d 2 C=\frac{d}{2},D=a_1-\frac{d}{2} C=2dD=a12d
其中,
S n = n a n + 1 2 S_n=na_{\frac{n+1}{2}} Sn=na2n+1 ⟹ \Longrightarrow 相同的奇数项和之比 a k b k \frac{a_k}{b_k} bkak= S 2 k − 1 T 2 k − 1 \frac{S_{2k-1}}{T_{2k-1}} T2k1S2k1
S n = d 2 n 2 + ( a 1 − d 2 ) n S_n=\frac{d}{2}n^2+(a_1-\frac{d}{2})n Sn=2dn2+(a12d)n ⟹ \Longrightarrow 对称轴为 n = − a 1 − d 2 2 × d 2 = 1 2 − a 1 d n=-\frac{a_1-\frac{d}{2}}{2×\frac{d}{2}}=\frac{1}{2}-\frac{a_1}{d} n=2×2da12d=21da1,最值取在最靠近对称轴的整数处
⟹ \Longrightarrow 下标和:+
⟹ \Longrightarrow 连续等长片段和/前n项和:新公差为 d n 2 dn^2 dn2
⟹ \Longrightarrow 偶数项和与奇数项和之比:
若等差数列一共有 2 n 2n 2n项,则 S 偶 − S 奇 = n d , S 偶 S 奇 = a n + 1 a n S_偶-S_奇=nd,\frac{S_偶}{S_奇}=\frac{a_{n+1}}{a_n} SS=ndSS=anan+1
若等差数列一共有 2 n — 1 2n—1 2n—1项,则 S 奇 − S 偶 = a n + 1 S_奇-S_偶=a_{n+1} SS=an+1 S 奇 S 偶 = n n − 1 \frac{S_奇}{S_偶}=\frac{n}{n-1} SS=n1n S 2 n − 1 = S 奇 + S 偶 = ( 2 n − 1 ) a n S_{2n-1}=S_奇+S_偶=(2n-1)a_n S2n1=S+S=(2n1)an
⟹ \Longrightarrow a n a_n an S n S_n Sn的快速转换: S n S_n Sn的二次项系数是 a n a_n an一次项系数的一半, a n a_n an的一次项系数是 S n S_n Sn二次项系数的二倍
⟹ \Longrightarrow 轮换对称性
⟹ \Longrightarrow 判定等差数列:①定义法: a n − a n − 1 = d a_n-a_{n-1}=d anan1=d;②通项形如 a n = A n + B a_n=An+B an=An+B;③前n项和形如 S n − C n 2 + D n S_n-Cn^2+Dn SnCn2+Dn

类比记忆法:牢记等差,引出等比
【等比数列
⟹ \Longrightarrow 通项公式: a n = a 1 q n − 1 = a m q n − m = a k q n − k = a 1 q q n a_n=a_1q^{n-1}=a_mq^{n-m}=a_kq^{n-k}=\frac{a_1}{q}q^n an=a1qn1=amqnm=akqnk=qa1qn
⟹ \Longrightarrow 前n项和公式:当q=1时, S n = n a 1 ;当 q ≠ 1 时, S n = a 1 ( 1 − q n ) 1 − q = a 1 − a n q 1 − q = a 1 − a n + 1 1 − q S_n=na_1;当q≠1时,S_n=\frac{a_1(1-q^n)}{1-q}=\frac{a_1-a_nq}{1-q}=\frac{a_1-a_{n+1}}{1-q} Sn=na1;当q=1时,Sn=1qa1(1qn)=1qa1anq=1qa1an+1
⟹ \Longrightarrow 下标和:×
⟹ \Longrightarrow 连续等长片段和:新公比为 q n q^n qn
⟹ \Longrightarrow 偶数项和与奇数项和之比:
若等比数列一共有 2 n 2n 2n项,则 S 偶 S 奇 = q \frac{S_偶}{S_奇}=q SS=q
若等比数列一共有 2 n 一 1 2n一1 2n1项,则 S 奇 S_奇 S S 偶 S_偶 S之间的关系无规律。】

【莫名巧合:等差数列
通项公式: a n = A n + B a_n=An+B an=An+B ⟹ \Longrightarrow A = d , B = a 1 − d A=d,B=a_1-d A=dB=a1d
求和公式: S n = C n 2 + D n S_n=Cn^2+Dn Sn=Cn2+Dn ⟹ \Longrightarrow C = d 2 , D = a 1 − d 2 C=\frac{d}{2},D=a_1-\frac{d}{2} C=2dD=a12d
所以记住, A = d , B = a 1 − d , C = d 2 , D = a 1 − d 2 ,验证: A + B = C + D A=d,B=a_1-d,C=\frac{d}{2},D=a_1-\frac{d}{2},验证:A+B=C+D A=dB=a1dC=2dD=a12d,验证:A+B=C+D

【递推数列
⟹ \Longrightarrow 类等差数列 ⟹ \Longrightarrow 累加法 ⟹ \Longrightarrow 形如 a n + 1 = a n + f ( n ) 或 a n + 1 − a n = f ( n ) a_{n+1}=a_n+f(n)或a_{n+1}-a_n=f(n) an+1=an+f(n)an+1an=f(n) ⟹ \Longrightarrow 写出若干项,再相加求解。
⟹ \Longrightarrow 类等比数列 ⟹ \Longrightarrow 累乘法 ⟹ \Longrightarrow a n + 1 = a n ⋅ f ( n ) 或 a n + 1 a n = f ( n ) a_{n+1}=a_n·f(n)或\frac{a_{n+1}}{a_n}=f(n) an+1=anf(n)anan+1=f(n) ⟹ \Longrightarrow 写出若干项,再相乘求解。
⟹ \Longrightarrow 构造等差数列 ⟹ \Longrightarrow 满足 b n + 1 − b n = 常数 b_{n+1}-b_n=常数 bn+1bn=常数 ⟹ \Longrightarrow 结论1:当看到 a n + 1 = a n c a n + 1 a_{n+1}=\frac{a_n}{ca_n+1} an+1=can+1an,那么{ 1 a n \frac{1}{a_n} an1}为等差数列;结论2:当看到 a n + 1 = q a n + q n a_{n+1}=qa_n+q^n an+1=qan+qn,两边同时除以 q n + 1 q^{n+1} qn+1来构造等差数列。
⟹ \Longrightarrow 构造等比数列 ⟹ \Longrightarrow 满足 b n + 1 b n = 常数 \frac{b_{n+1}}{b_n}=常数 bnbn+1=常数 ⟹ \Longrightarrow 结论1:当看到 a n + 1 = q a n + c a_{n+1}= qa_n+c an+1=qan+c时,转化为 a n + 1 + k = q ( a n + k ) a_{n+1}+k=q(a_n+k) an+1+k=q(an+k),其中 k = c q − 1 k=\frac{c}{q-1} k=q1c,构造等比数列即可。或者,类一次函数, a n + 1 = A ⋅ a n + B a_{n+1}=A·a_n+B an+1=Aan+B,构造等比数法, b n = a n + B A − 1 b_n=a_n+\frac{B}{A-1} bn=an+A1B。结论2:当看到 a n + 1 = A a n + B n + C a_{n+1}=Aa_n+Bn+C an+1=Aan+Bn+C型,可化成 a n + 1 + p ( n + 1 ) + q = A ( a n + p n + q ) a_{n+1}+p(n+1)+q=A(a_n+pn+q) an+1+p(n+1)+q=A(an+pn+q)的形式来求通项。
⟹ \Longrightarrow 没上述特点,列举前面若干项,寻找规律】

文章目录

数列

2023

真题(2023-18)-代数-数列-等比数列-性质-递增需要 a 1 > 1 , q > 1 a_1>1,q>1 a11q1;-代数-方程-一元二次方程-根-因式分解

在这里插入图片描述
在这里插入图片描述

真题(2023-24)-代数-数列-等比数列- a n a_n an S n S_n Sn的关系(重要)

在这里插入图片描述
在这里插入图片描述

2022

有趣,2022年跟等比中项杠上了

真题(2022-19)-代数-数列-等比数列-出现“三个数”-等比中项;-几何-平面几何

19.在△ 𝐴𝐵𝐶 中,𝐷 为 𝐵𝐶 边上的点, 𝐵𝐷 、 𝐴𝐵 、𝐵𝐶成等比数列,则 ∠𝐵𝐴𝐶 = 90°。
(1)𝐵𝐷 = 𝐷𝐶。
(2) 𝐴𝐷 ⊥ 𝐵𝐶。
在这里插入图片描述

真题(2022-21)-代数-数列-等比数列-出现“三个数”,用等比中项- a c = b 2 ac=b^2 ac=b2;-代数-几何-平面几何-三角形-勾股定理

21.某直角三角形的三边长 𝑎 , 𝑏 , 𝑐 成等比数列,则能确定公比的值。
(1)𝑎 是直角边长。
(2)𝑐 是斜边长。
在这里插入图片描述

真题(2022-23)-代数-数列-等比数列-出现“三个数”,用等比中项;+代数-函数-一元二次函数

23.已知𝑎,𝑏为实数,则能确定𝑎的值。
(1)𝑎,𝑏,𝑎 + 𝑏成等比数列。
(2)𝑎(𝑎 + 𝑏) > 0。
在这里插入图片描述

真题(2022-24)-代数-数列-等差数列-判定等差数列:①定义法: a n − a n − 1 = d a_n-a_{n-1}=d anan1=d;②通项形如 a n = A n + B a_n=An+B an=An+B;③前n项和形如 S n − C n 2 + D n S_n-Cn^2+Dn SnCn2+Dn;-代数-数列-递推数列-形如 a n + 1 = a n + f ( n ) 或 a n + 1 − a n = f ( n ) a_{n+1}=a_n+f(n)或a_{n+1}-a_n=f(n) an+1=an+f(n)an+1an=f(n),称为类等差数列,可以写出若干项,再相加求解。=先写出若干项,再用累加法求解。

24.已知正数列{ a n a_n an},则{ a n a_n an}是等差数列。
(1) a n + 1 2 − a n 2 = 2 n , n = 1 , 2 , . . . a_{n+1}^2-a_n^2=2n,n=1,2,... an+12an2=2n,n=1,2,...
(2) a 1 + a 3 = 2 a 2 a_1+a_3=2a_2 a1+a3=2a2
在这里插入图片描述在这里插入图片描述

2021

真题(2021-02)-代数-数列-等差数列-出现“三”,用等差中项,2b=a+c;-前10题特值法、设未知数

2.三位年轻人的年龄成等差数列,且最大与最小的两人年龄差的10倍是另一人的年龄,则三人中年龄最大的是( )。
A.19
B.20
C.21
D.22
E.23
在这里插入图片描述

真题(2021-24)-代数-数列-等比数列-等比数列判定-特征判断法-

24.已知数列{ a n a_n an},则数列{ a n a_n an}为等比数列。
(1) a n a n + 1 > 0 a_na_{n+1}>0 anan+10
(2) a n + 1 2 − 2 a n 2 − a n a n + 1 = 0 a^2_{n+1}-2a^2_n-a_na_{n+1}=0 an+122an2anan+1=0
在这里插入图片描述

真题(2021-25)-代数-数列-等差数列和等比数列;-几何-平面几何-三角形-相似;这种纯文字题,需要设未知数,但是很麻烦

25.给定两个直角三角形,则这两个直角三角形相似。
(1)每个直角三角形边长成等比数列。
(2)每个直角三角形边长成等差数列。

在这里插入图片描述
在这里插入图片描述

2020

真题(2020-05)-代数-数列-等差数列-最值-等差数列的前n项和可以整理成一元二次函数的形式: S n = d 2 n 2 + ( a 1 − d 2 ) n S_n=\frac{d}{2}n^2+(a_1-\frac{d}{2})n Sn=2dn2+(a12d)n,对称轴为 n = − a 1 − d 2 2 × d 2 = 1 2 − a 1 d n=-\frac{a_1-\frac{d}{2}}{2×\frac{d}{2}}=\frac{1}{2}-\frac{a_1}{d} n=2×2da12d=21da1,最值取在最靠近对称轴的整数处。or-莫名巧合:等差数列-通项公式: a n = A n + B a_n=An+B an=An+B ⟹ \Longrightarrow A = d , B = a 1 − d A=d,B=a_1-d A=dB=a1d;求和公式: S n = C n 2 + D n S_n=Cn^2+Dn Sn=Cn2+Dn ⟹ \Longrightarrow C = d 2 , D = a 1 − d 2 C=\frac{d}{2},D=a_1-\frac{d}{2} C=2dD=a12d,所以记住, A = d , B = a 1 − d , C = d 2 , D = a 1 − d 2 ,验证: A + B = C + D A=d,B=a_1-d,C=\frac{d}{2},D=a_1-\frac{d}{2},验证:A+B=C+D A=dB=a1dC=2dD=a12d,验证:A+B=C+D

5、若等差数列{ a n a_n an} 满足 a 1 = 8 a_1=8 a1=8,且 a 2 + a 4 = a 1 a_2+a_4=a_1 a2+a4=a1,则{ a n a_n an} 的前n 项和的最大值为( )
A.16
B.17
C.18
D.19
E.20

在这里插入图片描述
在这里插入图片描述

最值
1.等差数列前n项和 S n S_n Sn有最值的条件
(1)若 a 1 < 0 , d > 0 a_1<0,d>0 a1<0d>0时, S n S_n Sn有最小值。
(2)若 a 1 > 0 , d < 0 a_1>0,d<0 a1>0d<0时, S n S_n Sn有最大值。
2.求解等差数列 S n S_n Sn最值的方法
(1)一元二次函数法
等差数列的前n项和可以整理成一元二次函数的形式: S n = d 2 n 2 + ( a 1 − d 2 ) n S_n=\frac{d}{2}n^2+(a_1-\frac{d}{2})n Sn=2dn2+(a12d)n,对称轴为 n = − a 1 − d 2 2 × d 2 = 1 2 − a 1 d n=-\frac{a_1-\frac{d}{2}}{2×\frac{d}{2}}=\frac{1}{2}-\frac{a_1}{d} n=2×2da12d=21da1,最值取在最靠近对称轴的整数处。
特别地,若 S m = S n S_m=S_n Sm=Sn,即 S m + n = 0 S_{m+n}=0 Sm+n=0时,对称轴为 m + n 2 \frac{m+n}{2} 2m+n
(2) a n = 0 a_n=0 an=0
最值一定在“变号”时取得,可令a=0,则有
① 若解得n为整数,则 S n = S n − 1 S_n=S_{n-1} Sn=Sn1均为最值。例如,若解得n=6,则 S 6 = S 5 S_6=S_5 S6=S5为其最值。
② 若解得n为非整数,则当n取其整数部分m(m=[n])时, S m S_m Sm取到最值。例如,若解得n=6.9,则 S 6 S_6 S6为其最值。

真题(2020-11)-代数-数列-递推数列-没特点,列举若干项,找周期;类等差数列,累加法;类等比数列,累乘法。

11、已知数列{ a n a_n an}满足 a 1 = 1 a_1=1 a1=1 a 2 = 2 a_2=2 a2=2,且 a n + 2 = a n + 1 − a n ( n = 1 , 2 , 3 , . . . ) a_{n+2}=a_{n+1}-a_n(n=1,2,3,...) an+2=an+1an(n=1,2,3,...),则 a 100 a_{100} a100=( )
A.1
B.-1
C.2
D.-2
E.0

在这里插入图片描述

在这里插入图片描述

2019

真题(2019-15)-代数-数列-递推公式-构造等比数列-结论1:当看到 a n + 1 = q a n + c a_{n+1}= qa_n+c an+1=qan+c时,转化为 a n + 1 + k = q ( a n + k ) a_{n+1}+k=q(a_n+k) an+1+k=q(an+k),其中 k = c q − 1 k=\frac{c}{q-1} k=q1c,构造等比数列即可。

-秒杀:复杂选项(选多法):复杂选项可秒杀,按多的选(选多法),选项哪些因素出现多,就选哪些(90%准确率)1、99多,排除选项DE;2、-1,+1多,排除选项B。结果只能是A,C。看题干a1=0,C任何情况的不为0,所以选A。
15、设数列{ a n {a_n} an}满足 a 1 = 0 , a n + 1 − 2 a n = 1 a_1=0,a_{n+1}-2a_n=1 a1=0,an+12an=1,则 a 100 = a_{100}= a100=()
A. 2 99 − 1 2^{99}-1 2991
B. 2 99 2^{99} 299
C. 2 99 + 1 2^{99}+1 299+1
D. 2 100 − 1 2^{100}-1 21001
E. 2 100 + 1 2^{100}+1 2100+1
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

秒杀:复杂选项(选多法):复杂选项可秒杀,按多的选(选多法),选项哪些因素出现多,就选哪些(90%准确率)1、99多,排除选项DE;2、-1,+1多,排除选项B。结果只能是A,C。看题干a1=0,C任何情况的不为0,所以选A。

真题(2019-16)-代数-数列-等比数列-数列的判定-

16、甲、乙、丙三人各自拥有不超过10本图书,甲再购入2本图书后,他们拥有的图书量构成等比数列,则能确定甲拥有图书的数量。
(1) 已知乙拥有的图书数量。
(2) 已知丙拥有的图书数量。
在这里插入图片描述
在这里插入图片描述

真题(2019-25)-代数-数列-等差数列-数列判定-特征判断法- S n S_n Sn的特征:形如一个没有常数项的一元二次函数: S n = C n 2 + D n S_n=Cn^2+Dn Sn=Cn2+Dn(C,D为常数)

25、设数列{ a n a_n an}的前n项和为 S n S_n Sn,则{ a n a_n an}等差。
(1) S n = n 2 + 2 n , n = 1 , 2 , 3 S_n=n^2+2n,n=1,2,3 Sn=n2+2n,n=1,2,3
(2) S n = n + 2 n + 1 , n = 1 , 2 , 3 S_n=n^+2n+1,n=1,2,3 Sn=n+2n+1,n=1,2,3

在这里插入图片描述

在这里插入图片描述

2018

真题(2018-07)-代数-数列-等比数列-无穷等比数列

7.四边形 A 1 B 1 C 1 D 1 A_1B_1C_1D_1 A1B1C1D1是平行四边形, A 2 B 2 C 2 D 2 A_2B_2C_2D_2 A2B2C2D2 A 1 B 1 C 1 D 1 A_1B_1C_1D_1 A1B1C1D1四边的中点, A 3 B 3 C 3 D 3 A_3B_3C_3D_3 A3B3C3D3分别是 A 2 B 2 C 2 D 2 A_2B_2C_2D_2 A2B2C2D2四边中点,依次下去,得到四边形序列 A n B n C n D n A_nB_nC_nD_n AnBnCnDn(n = 1、2、3…) ,设 A n B n C n D n A_nB_nC_nD_n AnBnCnDn面积为 S n S_n Sn,且 S 1 = 12 S_1=12 S1=12,则 S 1 + S 2 + S 3 + . . . = () S_1+S_2+S_3+...=() S1+S2+S3+...=()
A. 16 16 16
B. 20 20 20
C. 24 24 24
D. 28 28 28
E. 30 30 30
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

真题(2018-17)-B-代数-数列-等差数列-求和公式: S n = n ( a 1 + a n ) 2 = n a n + 1 2 ( n 为偶数时,可虚拟小数) = n a 1 + n ( n − 1 ) 2 d = d 2 n 2 + ( a 1 − d 2 ) n S_n=\frac{n(a_1+a_n)}{2}=na_{\frac{n+1}{2}}(n为偶数时,可虚拟小数)=na_1+\frac{n(n-1)}{2}d=\frac{d}{2}n^2+(a_1-\frac{d}{2})n Sn=2n(a1+an)=na2n+1n为偶数时,可虚拟小数)=na1+2n(n1)d=2dn2+(a12d)n

17.{ a n a_n an}等差数列,则能确定 a 1 + a 2 + . . . + a 9 a_1+a_2+...+a_9 a1+a2+...+a9的值。
(1)已知 a 1 a_1 a1的值。
(2)已知 a 5 a_5 a5的值。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2017

真题(2017-03)-代数-数列-等差数列-出现“三”-等差中项-数列应用题

3.甲、乙、丙三种货车载重量成等差数列,2 辆甲种车和 1 辆乙种车的满载量为 95 吨,1辆甲种车和 3 辆丙种车载重量为 150 吨,则用甲、乙、丙各一辆车一次最多运送货物为( )吨。
A.125
B.120
C.115
D.110
E.105
在这里插入图片描述
在这里插入图片描述

2016

真题(2016-24)-代数-数列-递推公式-直接计算法-举反例

24.已知数列 a 1 , a 2 , a 3 , . . . , a 10 a_1,a_2,a_3,...,a_{10} a1,a2,a3,...,a10,则 a 1 − a 2 + a 3 − . . . + a 9 − a 10 ≥ 0 a_1-a_2+a_3-...+a_9-a_{10}≥0 a1a2+a3...+a9a100
(1) a n ≥ a n + 1 , n = 1 , 2 , . . . , 9 a_n≥a_{n+1},n=1,2,...,9 anan+1,n=1,2,...,9
(2) a n 2 ≥ a n + 1 2 , n = 1 , 2 , . . . , 9 a_n^2≥a_{n+1}^2,n=1,2,...,9 an2an+12,n=1,2,...,9
在这里插入图片描述

2015

真题(2015-20)-E-代数-数列-等差数列

20.设{ a n a_n an}是等差数列,则能确定数列{ a n a_n an}。
(1) a 1 + a 6 = 0 a_1+a_6=0 a1+a6=0
(2) a 1 a 6 = − 1 a_1a_6=-1 a1a6=1
在这里插入图片描述

在这里插入图片描述

真题(2015-23)-代数-数列-等差数列-前n项和的最值-若 a 1 < 0 , d > 0 a_1<0,d>0 a1<0d>0时, S n S_n Sn有最小值。

23.已知数列{ a n a_n an}是公差大于零的等差数列,{ S n S_n Sn}是{ a n a_n an}的前n 项和。则 S n ≥ S 10 , n = 1 , 2 , . . . S_n≥S_{10},n=1,2,... SnS10n=1,2,...
(1) a 10 = 0 a_{10}=0 a10=0
(2) a 11 a 10 < 0 a_{11}a_{10}<0 a11a100
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2014

真题(2014-07)-代数-数列-等差数列-出现“三”,用等差中项-

7.已知{ a n a_n an}为等差数列,且 a 2 − a 5 + a 8 = 9 a_2-a_5+a_8=9 a2a5+a8=9 ,则 a 1 + a 2 + . . . + a 9 = () a_1+a_2+...+a_9=( ) a1+a2+...+a9=()
A.27
B.45
C.54
D.81
E.182
在这里插入图片描述

在这里插入图片描述

真题(2014-18)-代数-数列-等差数列&等比数列-既是等差数列又是等比数列的数列是非零的常数列

18.甲、乙、丙三人的年龄相同
(1)甲、乙、丙的年龄成等差数列
(2)甲、乙、丙的年龄成等比数列

在这里插入图片描述
在这里插入图片描述

真题(2014-21)-A-代数-数列-等差数列;-方程-一元二次方程-判别式- △ = b 2 − 4 a c △=b^2-4ac =b24ac

21.方程 x 2 + 2 ( a + b ) x + c 2 = 0 x^2+2(a+b)x+c^2=0 x2+2(a+b)x+c2=0 有实根。
(1) a, b, c 是一个三角形的三边长。
(2)实数a, b, c 成等差数列。
在这里插入图片描述
在这里插入图片描述

2013

真题(2013-13)-代数-数列-等差数列-下标和公式;-代数-方程-一元二次方程-韦达定理- x 1 + x 2 = − b / a x_1+x_2=-b/a x1+x2=b/a

13.已知{ a n a_n an}为等差数列,若 a 2 a_2 a2 a 10 a_{10} a10是方程 x 2 − 10 x − 9 = 0 x^2-10x-9=0 x210x9=0的两个根,则 a 5 + a 7 = a_5+a_7= a5+a7=( )。
A. − 10 -10 10
B. − 9 -9 9
C. 9 9 9
D. 10 10 10
E. 12 12 12
在这里插入图片描述

真题(2013-25)-代数-数列-递推公式-难度升级-中间段才出现周期

25.设 a 1 = 1 , a 2 = k , . . . , a n + 1 = ∣ a n − a n − 1 ∣ , ( n ≥ 2 ) a_1=1,a_2=k,...,a_{n+1}=|a_n-a_{n-1}|,(n≥2) a1=1,a2=k,...,an+1=anan1,(n2) ,则 a 100 + a 101 + a 102 = 2 a_{100}+a_{101}+a_{102}=2 a100+a101+a102=2
(1) k = 2 k = 2 k=2
(2)k 是小于 20 的正整数

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/221841.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux基础】3. 文件基本属性

文章目录 【 1. 文件的属主和属组 】【 2. 显示文件的类型、权限 】2.1 文件类型2.2 文件权限 【 3. 更改文件属性 】3.1 chgrp 更改文件属组3.2 chown 更改文件所有者3.3 更改文件权限3.3.1 数字法更改文件权限3.3.2 符号法更改文件权限 【 1. 文件的属主和属组 】 Linux 系统…

自适应霍夫曼编码

自适应霍夫曼编码是一种动态数据压缩技术&#xff0c;它与传统的霍夫曼编码相比&#xff0c;不需要事先统计各个字符的频率&#xff0c;而是在编码的过程中动态地更新字符的频率信息。在本文中&#xff0c;我们将详细探讨自适应霍夫曼编码的原理、应用及其优势。 一、自适应霍…

LeetCode刷题--- 括号生成

个人主页&#xff1a;元清加油_【C】,【C语言】,【数据结构与算法】-CSDN博客 个人专栏 力扣递归算法题 http://t.csdnimg.cn/yUl2I 【C】 http://t.csdnimg.cn/6AbpV 数据结构与算法 http://t.csdnimg.cn/hKh2l 前言&#xff1a;这个专栏主要讲述递归递归、搜…

安卓13上手势导航失效、手机卡死问题

问题描述&#xff1a;打开我们开发的app后&#xff0c;手势导航无法退回、无法回到桌面、无法切换应用。 使用设备&#xff1a;小米手机、MI14,、安卓13 未适配安卓13安卓x的情况下&#xff0c;检查自己的 AndroidManifest 文件&#xff0c;过滤器是否设置了 <category a…

数据分析基础之《numpy(4)—ndarry运算》

一、逻辑运算 当我们要操作符合某一条件的数据时&#xff0c;需要用到逻辑运算 1、运算符 满足条件返回true&#xff0c;不满足条件返回false # 重新生成8只股票10个交易日的涨跌幅数据 stock_change np.random.normal(loc0, scale1, size(8, 10))# 获取前5行前5列的数据 s…

通过层进行高效学习:探索深度神经网络中的层次稀疏表示

一、介绍 深度学习中的层次稀疏表示是人工智能领域日益重要的研究领域。本文将探讨分层稀疏表示的概念、它们在深度学习中的意义、应用、挑战和未来方向。 最大限度地提高人工智能的效率和性能&#xff1a;深度学习系统中分层稀疏表示的力量。 二、理解层次稀疏表示 分层稀疏表…

C#中var、object和dynamic的区别

在C#编程语言中&#xff0c;我们经常会遇到var、object和dynamic这三个关键字。它们都用于声明变量&#xff0c;但在使用方法和特性上存在一些重要的区别。本文将详细介绍这三者的差异。 目录 var关键字object关键字dynamic关键字总结 var关键字 var是C#语言中的隐式类型推断…

机器学习 | 聚类Clustering 算法

物以类聚人以群分。 什么是聚类呢&#xff1f; 1、核心思想和原理 聚类的目的 同簇高相似度 不同簇高相异度 同类尽量相聚 不同类尽量分离 聚类和分类的区别 分类 classification 监督学习 训练获得分类器 预测未知数据 聚类 clustering 无监督学习&#xff0c;不关心类别标签 …

Android Studio开发之路(六)(合集)界面优化以及启动图标等

一、导航栏背景、字体修改 导航栏、状态栏等背景颜色的修改一般是在themes.xml文件中修改&#xff0c;android一个activity各个部件参考&#xff1a; colorPrimary,colorPrimaryDark等的意义 添加链接描述 但是问题在于&#xff1a;只在这里修改背景颜色的话&#xff0c;可能…

如何预防[[MyFile@waifu.club]].wis [[backup@waifu.club]].wis勒索病毒感染您的计算机?

导言&#xff1a; 近期&#xff0c;一种新兴的威胁[[MyFilewaifu.club]].wis [[backupwaifu.club]].wis勒索病毒&#xff0c;引起了广泛关注。这种恶意软件通过其高度复杂的加密算法&#xff0c;威胁着用户和组织的数据安全。本文将深入介绍[[MyFilewaifu.club]].wis [[backup…

超级计算机与天气预报:精准预测的科技革命

超级计算机与天气预报&#xff1a;精准预测的科技革命 一、引言 随着科技的飞速发展&#xff0c;超级计算机已经成为现代社会不可或缺的一部分。它们在科研、工业、军事等领域发挥着重要作用&#xff0c;其中天气预报是一个颇具代表性的应用领域。本文将探讨超级计算机在天气…

【办公软件】C# NPOI 操作Excel 案例

文章目录 1、加入NPOI 程序集&#xff0c;使用nuget添加程序集2、引用NPOI程序集3、设置表格样式4、excel加载图片5、导出excel 1、加入NPOI 程序集&#xff0c;使用nuget添加程序集 2、引用NPOI程序集 private IWorkbook ExportExcel(PrintQuotationOrderViewModel model){//…

redis基本用法学习(字符串类型基本操作)

字符串类型是redis支持的最简单的数据类型&#xff0c;同时最简单的键值对类型也是key和value都是单个字符串&#xff0c;本质上就是字符串之间的相互映射&#xff0c;redis官网String类型简介页面提到可以用于缓存HTML片段或页面内容。   redis支持设置/获取单个键值对&…

企业微信无法给Gmail发邮件问题

问题说明 在使用企业微信给国外客户的Gmail邮箱发信件的时候&#xff0c;邮件一直被退信&#xff0c;退信内容如下&#xff1a; 发件人&#xff08;*******.cn&#xff09;域名的DNS记录未设置或设置错误导致对方拒收此邮件。 host gmail-smtp-in.l.google.com[142.251.175.2…

GLTF/GLB模型在线预览、编辑、动画查看以及材质修改

在线工具推荐&#xff1a; 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 GLTF在线编辑器提供了一个内置的模型查看器&#xff0c;可以加载和预…

【沁恒蓝牙MESH】解决部分CH582单板无法正常启动的过程

本文主要记录了【沁恒蓝牙MESH】CH582单板无法正常启动的原因&#xff0c; 由于开发疏忽&#xff0c;注释了中断服务函数的代码&#xff0c;是入门嵌入式开发经常忽视的错误&#xff0c;用以记录&#xff0c;共勉&#xff01;&#xff01; 友情提示&#xff1a; 千万不要随便注…

Ubuntu 常用命令之 gunzip 命令用法介绍

&#x1f4d1;Linux/Ubuntu 常用命令归类整理 gunzip是一个在Ubuntu系统下用于解压缩文件的命令。它主要用于解压.gz格式的文件。这个命令是gzip命令的反向操作&#xff0c;gzip用于压缩文件&#xff0c;而gunzip则用于解压缩文件。 gunzip命令的参数有 -c 或 --stdout 或 -…

JAVA 中的 SPI 机制,从原理、现有框架中的使用以及自定义实现 SPI 机制使用来深入了解 SPI 机制

首先介绍 SPI 是什么 SPI 机制在框架中的使用 SPI 机制使用约定MySQL 驱动实现 SPI 机制示例 最后自己动手实现 SPI 机制使用示例 文章链接&#xff0c;点击跳转

基于Vue的汽车服务商城系统设计与实现论文

摘 要 本课题是根据用户的需要以及网络的优势建立的一个基于Vue的汽车服务商城系统&#xff0c;来更好的为用户提供服务。 本基于Vue的汽车服务商城系统应用Java技术&#xff0c;MYSQL数据库存储数据&#xff0c;基于SSMVue框架开发。在网站的整个开发过程中&#xff0c;首先对…

CSS设计器的使用

目录 css的概念 css的优势 css的基本语法 html中引入css样式 CSS基本选择器 选择器的使用 初级选择器&#xff1a; 标签选择器 类选择器 id选择器 高级选择器(结构选择器&#xff09; ①后代选择器(E F) ②子选择器(E>F) ③相邻兄弟选择器(EF) ④通用兄弟选择器(…