数字图像处理-空间域图像增强-爆肝18小时用通俗语言进行超详细的总结

目录

灰度变换

直方图(Histogram)

直方图均衡

直方图匹配(规定化)

空间滤波

低通滤波器

高通滤波器
​​​​​​​


本文章讲解数字图像处理空间域图像增强,大部分内容来源于课堂笔记中

灰度变换

图像增强:对图像进行处理,使其更适合于某种特定的应用,有空间域图像增强和变换域图像增强

空间域图像增强是在图像的像素级别进行操作的一种方法。它直接对图像的原始像素值进行处理,常见的空间域增强技术包括直方图均衡化、滤波(如均值滤波、中值滤波)、边缘检测、锐化等

变换域图像增强是在图像变换后进行增强操作的一种技术,它使用数学变换将图像转换到一个不同的域,然后在这个域中对图像进行操作,常见的变换域增强技术包括傅里叶变换、小波变换等,这种处理通常涉及更复杂的数学原理和计算

灰度变换是图像处理中一种常见的操作,其目的是通过对图像的灰度级进行变换,改变图像的对比度、亮度或者强调图像的某些特征。这种变换通常在图像的每个像素上进行,根据像素的原始灰度值应用一个变换函数,得到新的灰度值

通常,灰度变换的一般形式可以表示为:

g(x,y)=T[f(x,y)]

其中,g(x, y)是变换后的图像灰度值,f(x, y)是原始图像的灰度值,T是变换函数

若将邻域大小限制为1*1(上图的邻域为3*3),则简化为:

s=T(r)

r、s分别是f(x,y)、g(x,y)在任意点(x,y)的灰度级

下面介绍一些常见的灰度变换函数

1.图像反转变换

s=-r

效果:灰度图像---“黑白颠倒”  彩色图像---补色

用途:适用于增强图像中暗色区域的灰色细节部分

2.对数变换

s=clog(1+r),c\, \, \, is\, \, \, constant\, \, \, and\, \, \, r\, \, \, is\, \, \, not\, \, \, negative

效果:把窄范围的低灰度级映射到宽范围的灰度级,把宽范围的高灰度级映射到窄范围的高灰度级

应用:压缩图像的动态范围,显示图像的傅里叶频谱图等

3.反对数变换

s=c/log(1+r),c\, \, \, is\, \, \, constant\, \, \, and\, \, \, r\, \, \, is\, \, \, not\, \, \, negative

效果:把宽范围的低灰度级映射到窄范围的灰度级,把窄范围的高灰度级映射到宽范围的高灰度级

4.幂次(伽马)变换

s=cr^{\gamma },c\, \, \, and\, \, \, r\, \, \, are\, \, \,not\, \, \, negative

效果:

\gamma <1 扩展暗像素值,压缩亮像素值,提升暗区分辨能力

\gamma >1 压缩暗像素值,扩展亮像素值,提升亮区分别能力

应用:用于各种图像获取、打印和显示等设备的伽马校正

演示:

一般对于航拍图而言,由于是在空中拍,拍的照片都比较亮,导致整体画面不清晰、观感不舒服,所以可以对其使用\gamma值大于1的幂次变换进行调整

import cv2
import numpy as np# 读取图像
gray_image = cv2.imread('overlooking_img.jpg', cv2.IMREAD_GRAYSCALE)# 检查图像是否成功读取
if gray_image is None:print("Error: Could not read the image.")
else:# 伽马值gamma =  1.8# 进行伽马变换gamma_corrected = np.array(255 * (gray_image / 255) ** gamma, dtype='uint8')# 窗口大小window_size = (300, 200)# 创建原始图像窗口并设置大小cv2.namedWindow('Original Image', cv2.WINDOW_NORMAL)cv2.resizeWindow('Original Image', *window_size)cv2.imshow('Original Image', gray_image)# 创建伽马校正图像窗口并设置大小cv2.namedWindow('Gamma Corrected Image', cv2.WINDOW_NORMAL)cv2.resizeWindow('Gamma Corrected Image', *window_size)cv2.imshow('Gamma Corrected Image', gamma_corrected)cv2.waitKey(0)cv2.destroyAllWindows()

5. 分段线性变换

将灰度级划归不同范围,每个范围采用不同的线性变换

优点:变换形式可根据需要任意合成

缺点:需用户输入

主要形式:1.对比度拉伸2.灰度级分层(灰度切割)3.比特平面分层(位图切割)

直方图(Histogram)

直方图表示具有不同灰度级的像素个数的条形图,把图像的灰度看作一个随机变量,则直方图是描述该随机变量的概率分布的一个近似

如上图所示,左边是普通的直方图、右边的是归一化的直方图

仅仅观察一个图像的直方图就可以看出这个图像的特点,比如说如果直方图的组成成分集中在灰度级低低的一侧,那么就是暗图像,如果直方图窄而且集中在灰度级的中间,那么就是低对比度图像等等

直方图均衡

如果想要增加像素灰度值的动态范围,从而增强图像对比度,可以使用直方图均衡,直方图均衡会使用灰度变换进行灰度修正,使得变换后的图像的直方图的灰度值分布均匀

那么,现在我们就需要找到一个灰度变换函数s=T(r)(注意:这个函数一定是个单调递增函数),将每一个r映射为s,满足:s服从均匀分布

由于r和s的定义域和值域均为[0, L - 1],则可以得到s的概率分布函数:

p_{s}\left ( s \right )=1/\left ( L-1 \right )

再由概率密度函数的基本性质可得:

p_{s}\left ( s \right )ds=p_{r}\left ( r \right )dr

所以有:

ds=p_{r}\left ( r \right )dr/\left ( p_{s}\left ( s \right ) \right )=\left ( L-1 \right )p_{r\left ( r \right )}dr

两边同时做积分,有:

s=T(r)=(L-1)\int_{0}^{r}p_{r}(w)dw

对于M行N列的数字图像,灰度级出现的概率近似为:

p_{r}(r_{k})=n_{k}/(MN),k=0,1,2,...K-1

代入,可以得到灰度变换函数的离散形式

s_{k}=T(r_{k})=(L-1)\sum_{j=0}^{k}p_{j}(r_{j})=(L-1)/(MN)\sum_{j=0}^{k}n_{j},k=0,1,2,...,K-1

总结:直方图均衡化处理的核心是:非线性拉伸,它可以增强图像的对比度但不改变图像内容,但在均衡过程中,原来频数较小的灰度级会被归入很少几个或一个灰度级内造成细节损失,还需要注意的是高对比度图像经直方图均衡化后,质量可能变差

直方图匹配(规定化)

修改一幅图像的直方图,使得它与另一幅图像的直方图相似,从而突出感兴趣的灰度范围,使图像质量改善就是直方图的匹配,如下图所示

上图来源于csdn博主:薯仔的土小豆 《【数字图像处理】直方图规定化(含实现代码)》感谢大佬!

那么我们如何达到上述的效果呢?很简单

假设:r、z分别表示输入图像和输出图像(或者说规定匹配的那个图像)的灰度级

第一步,我们先让r做均衡化,得到s=T(r)    有小数要四舍五入

第二步,我们让z也做均衡化,得到s'=G(z)  有小数要四舍五入

由于直方图匹配不应该改变原始图像内容,所以s=s'

那么我们推出:

z=G^{-1}(s)=G^{-1}(T(r))

第三步,找映射关系,我用下面这个图讲解该如何去找:

比如对于输入图像的一个灰度值r1,我们先得到s1,然后再根据s1=s2得到s2,那么这个s2的横坐标就是输出图像的灰度值z1

空间滤波

使用空间域模板进行的图像处理,称为空域滤波。模板本身被称为空域滤波器
输出图像中的每一点为输入图像中某个相关区域像素集的映射

空间滤波的基础过程:

用上述“空间域模板”在待滤波图像上移动,从蓝到红到绿,依次生成输入值14、13、14

如果说图像f是M*N,滤波器w是m*n,其中m=2a+1,n=2b+1,g(x,y)是图像f经过滤波器w之后在点(x,y)的输出图像,w(s,t)是w在点(s,t)的系数,f(x,y)是原图像在(x,y)上的像素值则易得:

g(x,y)=\sum_{s=-a}^{a}\sum_{t=-b}^{b}w(s,t)f(x+s,y+t)

上式实际上是一个相关操作,还有一个操作叫做卷积,和相关非常相似,但略有不同

下面通过一个例子,直观展示两者的区别:

那么,卷积和相关相比,其优势在哪里?卷积的操作符合交换律、结合律、分配律,而相关仅仅符合分配律

低通滤波器

低通滤波器又称平滑滤波器,它可以去除图像中一些不重要的细节,比如噪声,还可以平滑图像

低通滤波器分为线性滤波器和非线性滤波器,下面细说

线性滤波器主要指均值滤波器,其一般形式如下,分为盒装滤波和加权均值滤波

其中n=a+b+c+...+h+i

如果为盒装滤波,则a=b=c=...=h=i 

如果为加权均值滤波,则a~i至少有两个值不同

非线性滤波器又称统计排序滤波器,一般分为三种:中值滤波器、最大值滤波器、最小值滤波器,这三种滤波器非常好理解,以最大值滤波器为例,输出像素就是原像素滤波范围内所有像素的最大像素值

中值滤波器可以消除孤立的亮点或暗点、有效去除椒盐噪声,同时较均值滤波器而言,更好地保留边的锐度和图像的细节

高通滤波器

高通滤波器又称锐化滤波器,它可以突出图像的细节,在超声探测成像中,可以通过锐化改善分别率低、边缘模糊等问题,同时也可以恢复过度钝化、曝光不足的图像

先简单介绍一下图像中的高频信息和低频信息,低频是指灰度变化比较小的像素区域(图像内容),高频是指灰度变化比较大的像素区域(变化或者内部纹理),而高通滤波器就是要削弱低频信息,突出高频信息,这与上述低通滤波器恰恰相反

高通滤波器当中常见的两种形式是一阶微分和二阶微分

那么,先介绍一下这两种微分的数学形式

一阶微分

\frac{\partial f}{\partial x}=f(x+1)-f(x)

二阶微分

\frac{\partial^2 f}{\partial x^2}=f(x+1)+f(x-1)-2f(x)

使用二阶微分锐化图像一般用拉普拉斯算子,其定义式如下:

\bigtriangledown ^{2}f=\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2f }{\partial y^2}=f(x+1,y)+f(x-1,y)+f(x,y+1)+f(x,y-1)-4f(x,y)

其中第二个等号后面是代入上述二阶微分算式后求得的偏导结果

根据拉普拉斯算子的定义,容易得到拉普拉斯算子的标准滤波模板

如果对上述的模板进行扩展,使得其能够处理对角线的四个像素,可以得到如下模板:

最后是上面两种模板的另一种形式

下面是使用上述两种模板进行锐化的实例,可以发现:经有对角分量的掩膜处理后的图像,比基本掩膜处理后的图像更加锐化

使用一阶微分锐化图像一般用梯度,其定义式如下:

\bigtriangledown f=[(z_{6}-z_{5})^{2}+(z_{8}-z_{5})^{2}]^{1/2}

用上述的式子很难形成滤波的模板,所以我们采取的方式是用绝对值替换

\bigtriangledown f=[G_{x}^{2}+G_{y}^{2}]^{1/2}\approx |G_x|+|G_y|

形成了下面常用的三种算子

1.Roberts交叉梯度算子

\bigtriangledown f\approx |z_9-z_5|+|z_8-z_6|

2.Prewitt梯度算子

\bigtriangledown f\approx |(z_7+z_8+z_9)-(z_1+z_2+z_3)|+|(z_3+z_6+z_9)-(z_1+z_4+z_7)|

3.Sobel梯度算子

\bigtriangledown f\approx |(z_7+2z_8+z_9)-(z_1+2z_2+z_3)|+|(z_3+2z_6+z_9)-(z_1+2z_4+z_7)|

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/222624.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

万界星空开源MES/注塑MES/开源注塑MES/免费MES/MES源码

一、系统概述&#xff1a; 万界星空科技免费MES、开源MES、商业开源MES、市面上最好的开源MES、MES源代码、适合二开的开源MES、好看的数据大屏、功能齐全开源mes. 1.万界星空开源MES制造执行系统的Java开源版本。 开源mes系统包括系统管理&#xff0c;车间基础数据管理&…

【大模型】LLM显存占用对比:Qwen-7B-Chat,Qwen-14B-Chat-Int8,chatglm3-6b

【大模型】LLM显存占用对比&#xff1a;Qwen-7B-Chat&#xff0c;Qwen-14B-Chat-Int8&#xff0c;chatglm3-6b 显存占用对比&#xff1a;总结参考 显存占用对比&#xff1a; 显卡&#xff1a;NVIDIA GeForce RTX 4090 系统环境&#xff1a;ubuntu 22.04LTS Qwen-14B-Chat-Int8…

VScode 工作区配置 和 用户配置

一、工作区配置 通常不同的项目都有不同的配置&#xff0c;我一般都是使用eslint和prettier一起用&#xff0c;所以经常会有这几个文件&#xff1a; 这里简单介绍一下这几个文件的作用吧。 1.vscode文件夹下 一般有两个文件&#xff0c;extensions.json和settings.json。 e…

[Linux] LVS+Keepalived高可用集群部署

一、Keepalived实现原理 1.1 高可用方案 Keepalived 是一个基于VRRP协议来实现的LVS服务高可用方案&#xff0c;可以解决静态路由出现的单点故障问题。 在一个LVS服务集群中通常有主服务器&#xff08;MASTER&#xff09;和备份服务器&#xff08;BACKUP&#xff09;两种角色…

WEB 3D技术 three.js 设置图像随窗口大小变化而变化

本文 我们来讲讲我们图层适应窗口变化的效果 可能这样说有点笼统 那么 自适应应该大家更熟悉 就是 当我们窗口发生变化说 做一些界面调整比例 例如 我们这样一个i项目界面 我们打开 F12 明显有一部分被挡住了 那么 我们可以刷新 这样是正常了 但是 我们将F12关掉 给F12的…

FFmpeg 简单文档

一、播放器框架 常用音视频术语 容器&#xff0f;文件&#xff08;Conainer/File&#xff09;&#xff1a;即特定格式的多媒体文件&#xff0c;比如mp4、flv、mkv等。媒体流&#xff08;Stream&#xff09;&#xff1a;表示时间轴上的一段连续数据&#xff0c;如一段声音数据、…

解决找不到vcruntime140.dll无法继续执行的多种方法分享

最近&#xff0c;我在使用电脑时遇到了一个问题&#xff0c;即“由于找不到vcruntime140.dll无法继续执行”。vcruntime140.dll是Visual C Redistributable Packages中的一个组件&#xff0c;它是Visual Studio 2015中运行C程序所必需的。如果找不到vcruntime140.dll文件&#…

【Jenkins】远程API接口:Java 包装接口使用示例

jenkins-rest 库是一个面向对象的 Java 项目&#xff0c;它通过编程方式提供对 Jenkins REST API 的访问&#xff0c;以访问 Jenkins 提供的一些远程 API。它使用 jclouds 工具包构建&#xff0c;可以轻松扩展以支持更多 REST 端点。其功能集不断发展&#xff0c;用户可以通过拉…

Spring中你一定要知道的afterPropertiesSet()

文章目录 功能源码 功能 初始化bean执行的回调方法其一&#xff0c;它不像PostConstruct一样可以有多个&#xff0c;只能调用一次&#xff1b;它执行的时机是在PostConstruct之后&#xff0c;从它的名称也可以看出&#xff0c;他是在属性填充完&#xff0c;也就是bean初始化完…

浅述无人机技术在地质灾害应急救援场景中的应用

12月18日23时&#xff0c;甘肃临夏州积石山县发生6.2级地震&#xff0c;震源深度10千米&#xff0c;灾区电力、通信受到影响。地震发生后&#xff0c;无人机技术也火速应用在灾区的应急抢险中。目前&#xff0c;根据受灾地区实际情况&#xff0c;翼龙-2H应急救灾型无人机已出动…

C语言操作符详解+运算符优先级表格

目录 前言 一、操作符是什么&#xff1f; 二、操作符的分类 三、算术操作符 四、逻辑操作符 五、比较操作符 六、位操作符 七、赋值操作符 八、其他操作符 九、运算符优先级表格 总结 前言 在编写程序时&#xff0c;最常用到的就是操作符&#xff0c;本文将详细的介绍…

使用通道和模式

通过通道、选择语句和最佳实践掌握 Go 中的并发编程 并发编程是构建高效和响应迅速的软件的强大范例。Go&#xff0c;也被称为 Golang&#xff0c;通过通道提供了一种健壮且优雅的解决方案来进行并发通信。在这篇文章中&#xff0c;我们将探讨通道的概念、它们在并发编程中的作…

异步编程Promise

文章目录 前言一、关于 Promise 的理解与使用1.相关知识补充区别实例对象和函数对象同步回调异步回调Js中的错误&#xff08;error&#xff09;和错误处理 2.promise是什么 二、Promise 原理三、Promise 封装 Ajax四、async 与 await总结 前言 在项目中&#xff0c;promise的使…

c语言:文件操作(2),认识各种文件操作函数

fgets 作用 fgets是C语言标准库中用于从文件中读取字符串的函数。 fgets函数从指定的文件流stream中读取最多n-1个字符&#xff0c;或者直到遇到换行符&#xff08;包括换行符在内&#xff09;&#xff0c;并将其存储到以str指向的字符数组中。读取的字符串会以null字符\0结…

【小白专用】php以pdo方式连接sqlserver,开启sqlsrv扩展

一、安装ODBC程序&#xff0c; 下载适用于 SQL Server 的 ODBC 驱动程序 - 适用于 SQL Server 的 ODBC 驱动程序 |Microsoft 学习 运行安装程序&#xff0c;出现如下图所示页面&#xff1b; 选择下一步&#xff1b;选择我同意许可协议中的条款后选择下一步&#xff1b; 点击安…

22 3GPP在SHF频段基于中继的5G高速列车场景中的标准化

文章目录 信道模型实验μ参考信号初始接入方法波形比较 RRH&#xff1a;remote radio head 远程无线头 HTS&#xff1a;high speed train 高速移动列车 信道模型 考虑搭配RRH和车载中继站之间的LOS路径以及各种环境&#xff08;开放或峡谷&#xff09;&#xff0c;在本次实验场…

ARM GIC(四) gicv3架构基础

GICv3架构是GICv2架构的升级版&#xff0c;增加了很多东西。变化在于以下&#xff1a; 使用属性层次&#xff08;affinity hierarchies&#xff09;&#xff0c;来对core进行标识&#xff0c;使gic支持更多的core 将cpu interface独立出来&#xff0c;用户可以将其设计在core…

说说 style gan 中的感知路径长度(Perceptual Path Length)

我在之前的博库中介绍了 style gan 的基本原理&#xff0c;原文中有提出感知路径长度&#xff08;Perceptual Path Length&#xff09;的概念。这是一种评价生成器质量的方式。 PPL基本思想&#xff1a;给出两个随机噪声 z 1 , z 2 ​ &#xff0c;为求得两点的感知路径长度PPL…

数据可视化---离群值展示

内容导航 类别内容导航机器学习机器学习算法应用场景与评价指标机器学习算法—分类机器学习算法—回归机器学习算法—聚类机器学习算法—异常检测机器学习算法—时间序列数据可视化数据可视化—折线图数据可视化—箱线图数据可视化—柱状图数据可视化—饼图、环形图、雷达图统…

HuatuoGPT模型介绍

文章目录 HuatuoGPT 模型介绍LLM4Med&#xff08;医疗大模型&#xff09;的作用ChatGPT 存在的问题HuatuoGPT的特点ChatGPT 与真实医生的区别解决方案用于SFT阶段的混合数据基于AI反馈的RL 评估单轮问答多轮问答人工评估 HuatuoGPT 模型介绍 HuatuoGPT&#xff08;华佗GPT&…