2016年第五届数学建模国际赛小美赛C题对超级细菌的战争解题全过程文档及程序

2016年第五届数学建模国际赛小美赛

C题 对超级细菌的战争

原题再现:

  最近有很多关于我们抗生素耐药性危机的讨论。进化出的能够抵抗抗生素的细菌每年杀死70万人,越来越强大的细菌正在世界各地传播。研究人员担心,我们将进入一个后抗生素时代,在这个时代里,我们被细菌感染,这些细菌可以击败药物提供的每一种药物。下周,联合国将召开一次高级别会议,协调全球打击这些无形敌人的斗争。
  巴顿和其他志同道合的科学家们在60多年前就警告说,抗生素危机即将来临,尽管他们今天大多被遗忘了。他们是对的,但他们被忽视了。他们的失败为今天的新十字军提供了一些重要的教训。
  然而,就在第二次世界大战结束一年后,青霉素的发现者警告说,它可能会变得毫无用处。1945年,亚历山大弗莱明获得诺贝尔奖,他指出了失败的原因。弗莱明说:“无知的人很容易给自己剂量不足,这是一种危险,通过将他的微生物暴露在非致命数量的药物中,使其产生耐药性。”
  这并不是说其他科学家否认了进化论的真实性。这似乎并不重要。当时的科学家发现了更多的抗生素。如果细菌对青霉素产生抗药性,它们总是能够转换成另一种武器。
  在一场持续了十多年的斗争中,改革者推动食品和药品管理局对抗生素进行更严格的监管。他们取得了成功,从市场上撤下了大量违法药品,并制定了更严格的规则,允许新药品进入市场。
  与此同时,抗生素耐药性的真正威胁越来越明显。在20世纪60年代早期,科学家们发现,一旦一种细菌中进化出一种抗性基因,微生物就可以将其捐赠给其他细菌。微生物可以将这些捐赠的基因装载在一块DNA上,进一步加速耐药性的传播。
  1966年,Look杂志上的一篇文章用近乎天启的修辞描述了抗生素耐药性的新观点。“细菌是不是赢得了与人类的战争?”标题写道。文章用一个新的绰号来提及这些细菌:超级细菌。
  然而,事实证明,组织一场对抗抗生素耐药性的斗争比对抗无效或危险的药物要困难得多。早在20世纪50年代,世界卫生组织就组织了关于抗生素耐药性的会议,但最终失败了。参加会议的专家们陷入了关于如何衡量抵抗力以及考虑对公共健康的威胁程度的争论之中。
  同时也很难弄清楚如何对抗抗生素耐药性。为了使劣药退出市场,改革者只有一个目标:FDA。为了减少良药的使用,改革者必须同时达到许多不同的目标:医生、医院管理人员、病人、政府、制药公司——甚至是那些开始给牲畜喂食抗生素以使牲畜长大的农民。
  更糟糕的是,规范抗生素的运动让医生们很生气。他们说,“FDA是谁把这些药拿走的?我已经用了30年了,我的病人似乎越来越好。”
  联合国已经要求你的团队,ICM-FDA帮助你更好地了解抗生素耐药性危机的相关因素。

  任务1:建立一个模型,为抗生素的使用和各方的敏感性提供利益链。在建模过程中,可能需要考虑影响供需的因素的动态性质。
  任务2:在完全竞争市场下预测危机的发展趋势。
  任务3:设计一个便携式抗生素使用管理系统是超级细菌的当务之急。ICM-FDA已被要求参加一个政策策略会议,要求您的团队就您的模型编写一份报告并提出一套政策。
  任务4:制定奖励政策,鼓励饲养者在不使用抗生素的情况下饲养牛。

整体求解过程概述(摘要)

  最近有很多关于我们抗生素耐药性危机的讨论。超级细菌的出现使抗生素耐药危机成为亟待解决的问题。
  针对课题一,通过供需动态因素分析,建立抗生素使用利益链,分析参与各方对抗生素使用的敏感性,并考虑抗生素对易感人群的影响。首先,通过供需链引出关于抗生素使用的利益链。对于敏感度分析,采用单因素敏感度分析方法对各相关方的敏感度进行分析,得出患者对抗生素使用的敏感度最高,政府对抗生素使用的敏感度最低的结论。
  针对任务二,结合任务中的供需关系中的利益链模型,从供给因素、需求因素、细菌因素三个方面,分析抗生素耐药的相关因素。以两个指标共7项为参考数据,利用BP神经网络建立了抗生素耐药危机发展趋势预测模型,并对图像进行拟合,即对发展趋势进行拟合,从而得出结论:在完全竞争的市场下,抗生素耐药危机将向更为严重的方向发展。
  针对任务三,结合任务一的利益链和任务二的危机预测,创建了便携式抗生素使用管理系统。首先确定管理系统的参与者是相关部门,然后创建系统用例模型,最终生成一个综合分类管理系统。最后,根据任务一和任务二,建立管理制度,提出合理的政策,遏制抗生素滥用。
  针对任务四,主要根据前三个任务的研究结果,综合考虑供需关系、抗生素耐药危机及相关部门等因素,平衡各方利益,提出建立渔牧兽医服务站的建议,它将为农民饲养的牛提供各种服务,包括对牛的防疫和治疗以及监测抗生素的使用。禁止超过抗生素使用标准的黄牛进入市场,对于不使用抗生素饲养黄牛的农户,将获得市场价格3%的奖励,然后利用奖励矩阵建立政策的可行性分析模型,并通过进行详细分析,验证了政策的可行性。

模型假设:

  (1) 对于同一疾病,我们总能找到一种仿制药代替抗生素,但没有明显的抗菌效果。
  (2) 只考虑一般疾病,针对特定疾病予以清除。
  (3) 牲畜中抗生素残留检测标准的存在。
  (4) 排除抗生素生产难度等无关因素。

问题重述:

  任务一的陈述与分析
  建立一个模型,为抗生素的使用和各方的敏感性提供利益链。在建模过程中,应考虑影响供给和需求的因素的动态性质。对于第一个任务,首先要明确利益链的定义,利益链就是利益链上下各方的利益链。对于第一个问题,首先要明确利益链的定义,利益链是链条上人与下游人之间的利益关系。首先,通过对标题的分析得出一些关键角色:医生、医院管理者、政府、患者、制药公司和养殖户。首先对供应链进行分析,得到抗生素生产和使用过程中的供需关系,得到利益链模型,并对各参与方的利益链模型从供应侧(抗生素生产商)和需求侧(易感人群)两个方面进行敏感性分析。

  任务二的陈述与分析
  在完全竞争市场下预测危机的发展趋势。对于第二项任务,首先必须明确市场完全竞争的概念和危机,即在政府等外部因素缺位的情况下,市场完全由“看不见的手”控制抗生素耐药性危机。为此,总结了抗生素生产和使用过程的流程图,找出影响抗生素耐药性的六个因素,利用灰色神经网络系统建立危机预测模型,通过数据采集和归一化处理,利用模型预测发展趋势。

  任务三的重述与分析
  设计一个便携式抗生素使用管理系统是当务之急。我们应该就我们的模式写一份报告,并提出一套政策。对于任务三,抗生素的滥用已经成为一个日益严重的问题,为了避免超级细菌的产生,我们需要对抗生素的使用进行管理和监测。首先明确便携式管理系统的用户是相关部门,将系统的参与者确定为相关部门、抗生素医疗机构和抗生素农业机构,建立系统用例模型,定义每个参与者的功能,最后生成一个层次化的管理系统。针对不同类型的参与者和不同方面的措施,从医疗机构、农户、饲料生产企业、知识普及等方面提出了具体的政策建议。

  任务4的重述和分析
  我们被要求为农民制定一项奖励政策,鼓励他们饲养没有抗生素的牛。对于第四项任务,我们需要利用前三项任务的成果得出具体的激励政策,从市场供求、抗生素耐药危机的发展趋势、相关部门的具体措施等方面,结合农民群体的特殊性和自身利益,提出一些激励政策,使农民不使用抗生素喂养。然后利用报酬矩阵建立可行性验证模型,并利用模型分析得出激励政策是否可行。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

from scipy import stats 
import numpy as np 
from numpy.random import rand 
import math 
import matplotlib.pyplot as plt 
import numpy as np 
from scipy.stats import chisquare 
from scipy.optimize import curve_fit 
pre_rst = [0.1, 0.12, 0.2, 0.15, 0.15, 0.17, 0.14, 0.14, 0.16,
0.4, 0.37, 0.38, 0.28, 0.28]
pre_use = [153, 136, 125, 117, 116, 111, 117, 121, 120, 113, 111, 105, 
104, 102]
def cal_r(t, x0, x1, x2):r = (1/t)*math.log((1/x0-1/x1)/(1/x1-1/x2))return r
def cal_n(r, t, x0, x1):n = (1-math.e**(-r*t))/(1/x1-math.e**(-r*t)/x0)return n
def cal_rst(t, r, n):return n/(1+(n/0.1-1)*math.e**(-r*t))
r=cal_r(2.0, 0.14, 0.28, 0.37)
n=cal_n(r, 2.0, 0.14, 0.37)
pdt_rst = []
years = len(pre_rst)-2
for i in range(1,years,1):pdt_rst.append(cal_rst(i,r,n))
# pre_use = pre_use[:len(pre_use)-3]
pre_use = sorted(pre_use)
pdt_rst = sorted(pre_rst)
# z1 = np.polyfit(pre_use, pdt_rst, 3)#用 3 次多项式拟合
# p1 = np.poly1d(z1)
# 模拟医院,医生,病人的动作
def func(x,a,b):return a*np.log(b*x)
popt, pcov = curve_fit(func, pre_use, pdt_rst)
a=popt[0]#popt 里面是拟合系数,读者可以自己 help 其用法
b=popt[1]
print a,b
print 'func:',func(147,a,b)
print 'optimal:',func(120,a,b)
class Patient:# p_id 为病人的病号,drug 为当前用药,resistant 为抗药性,recover 为恢复状
况,cure_days 为已经治疗的天数def __init__(self, pid, drug, resistant, recover, cure_days):self.pid = pidself.drug = drugself.resistant = resistantself.recover = recoverself.cure_days = cure_days
RESISTANT = 0.5
T1 = 5
T2 = 10
DAY_PATIENTS = 30 # 每天 30 个病人
p_id = 0
sim_cure_days = []
sim_d1_sale = []
pre_use = [153, 136, 125, 117, 116, 111, 117, 121, 120, 113, 111, 105, 
104, 102]
mean_use = np.mean(pre_use)
# 描述进入医院的病人
def ent_hpt(patients):# day_rst = stats.poisson.pmf(np.arange(DAY_PATIENTS), RESISTANT) # 每
天病人的抗药性分布day_rst = rand(DAY_PATIENTS)tmp = np.mean(day_rst)for i in range(len(day_rst)):day_rst[i] = day_rst[i]*RESISTANT/0.5day_ptn = map(lambda x: Patient(p_id, 1, x, 0.0, 0.0), day_rst)patients += day_ptnreturn patients
def cure(patients, rec_ptn, drug1_sale, drug2_sale, use, total_cure_days):tmp = []for p in patients:if p.drug == 1 and p.cure_days > 0:# cdp = use*((0.5*(1-p.recover/p.cure_days) + 
0.5*p.cure_days/T1)**2)# cdp = (use*(1-p.recover/p.cure_days))**2cdp = 0.3*((1-use)*(1 - p.recover / p.cure_days))if rand() < cdp:p.drug = 2rec_ratio = 0if p.drug == 1:rec_ratio = (float)((1-p.resistant))/T1drug1_sale += 1if p.drug == 2:rec_ratio = 1.0/T2drug2_sale += 1p.recover += rec_ratiop.cure_days += 1if p.recover >= 1:tmp.append(p)rec_ptn.append(p)total_cure_days.append(p.cure_days)for p in tmp:patients.remove(p)return patients, rec_ptn, drug1_sale, drug2_sale, total_cure_days
def sim_hosp(use):all_patients = []rec_patients = []cure_days = []d1_sale = 0d2_sale = 0for i in range(30):
patients = ent_hpt(all_patients)while all_patients:patients, recover_patients, d1s, d2s, cure_days = cure(patients, 
rec_patients, d1_sale, d2_sale, use, cure_days)d1_sale = d1sd1_count = 0for p in rec_patients:if p.drug == 1:d1_count += 1sim_cure_days.append(np.mean(cure_days))sim_d1_sale.append(d1s)# print '平均治疗时间: ', np.mean(total_cure_days)# print '抗生素销售: ', d1_sale# print '二线药物销售: ', d2_sale# print '坚持使用抗生素病人数: ', d1_count
# 市场自由发展
next_cure_days = []
next_d1_sale = []
max_use = np.mean(pre_use)
RESISTANT = func(max_use,a,b)
curr_use = max_use
pdt_rst = [0.1792628046926503, 0.2943181818181818, 0.43063362673704436, 
0.558124635993011, 0.6535518026442507, 0.713738475784049, 0.7476984370881284, 
0.7656659431653637, 0.7748492466183726, 0.7794600206940622, 
0.7817543053571258]
for rst in pdt_rst:print rstRESISTANT = rstsim_hosp(curr_use/200)
print sim_cure_days
print sim_d1_sale
sim_uses = np.arange(80,200,1)
min_use = np.min(sim_uses)
max_use = np.max(sim_uses)
for use in sim_uses:RESISTANT = func(use,a,b)sim_hosp(use)print use,'==>',RESISTANT,'==>',sim_cure_days[len(sim_cure_days)-1]
print sim_cure_days
print sim_d1_sale
d1s_min = np.min(sim_d1_sale)
d1s_max = np.max(sim_d1_sale)
sim_d1_sale = map(lambda x: x*1.0/d1s_max,sim_d1_sale)
cd_min = np.min(sim_cure_days)
cd_max = np.max(sim_cure_days)
# sim_cure_days = map(lambda x: x*1.0/cd_max,sim_cure_days)
profits = []
for i in range(len(sim_cure_days)):profits.append(sim_cure_days[i]+10.0/sim_d1_sale[i])
print profits
uses = sim_uses
min_pft = np.min(profits)
max_pft = np.max(profits)
print max_pft,min_pft
plt.figure(figsize=(30,9),dpi=80)
plt.yticks(np.linspace(min_pft-1,max_pft+1,num=(int)(max_pftmin_pft)+1,endpoint=True))
plt.xticks(np.linspace(min_use,max_use,num=(max_usemin_use)/5+1,endpoint=True))
plt.ylim(min_pft-1,max_pft+1)
plt.xlim(min_use-0.2,max_use+0.2)
plt.ylabel('Profit',fontsize=15)
plt.xlabel('Drug use',fontsize=15)
plt.plot(uses,profits,label='Profit',marker='d',linewidth=2.5,markersize=6,
color='fuchsia')
# 
plt.plot(X,fit_vals,label='Fit',marker='s',linewidth=2.5,markersize=10,colo
r='cornflowerblue')
plt.legend(loc='upper right')
plt.show()
plt.figure(figsize=(30,9),dpi=80)
plt.yticks(np.linspace(min_pft-1,max_pft+1,num=(int)(max_pftmin_pft)+1,endpoint=True))
plt.xticks(np.linspace(min_use,max_use,num=(max_use-min_use)/5+1,endpoint=True))
plt.ylim(min_pft-1,max_pft+1)
plt.xlim(min_use-0.2,max_use+0.2)
plt.ylabel('Profit',fontsize=15)
plt.xlabel('Drug use',fontsize=15)
plt.plot(uses,profits,label='Profit',marker='d',linewidth=2.5,markersize=6,
color='fuchsia')
# 
plt.plot(X,fit_vals,label='Fit',marker='s',linewidth=2.5,markersize=10,colo
r='cornflowerblue')
plt.legend(loc='upper right')
plt.show()
import math
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import chisquare
from scipy.optimize import curve_fit
pre_rst = [0.1, 0.12, 0.2, 0.15, 0.15, 0.17, 0.14, 0.14, 0.16,
0.4, 0.37, 0.38, 0.28, 0.28]
pre_use = [153, 136, 125, 117, 116, 111, 117, 121, 120, 113, 111,
105, 104, 102]
def cal_r(t, x0, x1, x2):r = (1/t)*math.log((1/x0-1/x1)/(1/x1-1/x2))return r
def cal_n(r, t, x0, x1):n = (1-math.e**(-r*t))/(1/x1-math.e**(-r*t)/x0)return n
def cal_rst(t, r, n):return n/(1+(n/0.1-1)*math.e**(-r*t))
# pre_rs = 
[cal_r(1,0.1,0.12,0.2),cal_r(1,0.14,0.16,0.4),cal_r(2,0.14,0.16,0.37)]
# pre_ns =[cal_n(pre_rs[0],1,0.1,0.2),cal_n(pre_rs[1],1,0.14,0.4),cal_n(pre_rs[
2],2,0.14,0.37)]
#
# print pre_ns
r=cal_r(2.0, 0.12, 0.15, 0.17)
n=cal_n(r, 2.0, 0.12, 0.17)
print 'r=',r
print 'n=',n
pdt_rst = []
years = len(pre_rst)-2
for i in range(1,years,1):pdt_rst.append(cal_rst(i,r,n))
next_rsts = []
for i in range(12,22,1):next_rsts.append(cal_rst(i,r,n))
print 'next_years:',next_rsts
data_names = range(2002,2013,1)
X = range(len(data_names))
print 'pdt_rst', pdt_rst
plt.figure(figsize=(30,9),dpi=80)
plt.yticks(np.linspace(0,1,num=11,endpoint=True))
plt.xticks(range(len(data_names)),data_names)
X = range(len(data_names))
plt.ylim(0,1.2)
plt.xlim(-0.2,len(data_names)+0.2)
plt.xlabel('Drug use',fontsize = 15)
plt.ylabel('Resistant',fontsize=15)
plt.plot(X,pdt_rst,label='Predict',marker='d',linewidth=2.5,markersiz
e=6,color='fuchsia')
plt.plot(X,pre_rst[3:],label='Real',marker='s',linewidth=2.5,markersi
ze=10,color='cornflowerblue')
plt.legend(loc='upper right')
plt.show()
# pre_use = pre_use[:len(pre_use)-3]
# pre_use = sorted(pre_use)
# # print pre_use
# pdt_rst = sorted(pre_rst[3:])
# def func(x,a,b):
# return a*np.log(b*x)
# popt, pcov = curve_fit(func, pre_use, pdt_rst)
# a=popt[0]
# b=popt[1]
# print a,b
plt.plot(X,pdt_rst,label='Real',marker='d',linewidth=2.5,markersize=6
,color='fuchsia')
# 
plt.plot(X,fit_vals,label='Fit',marker='s',linewidth=2.5,markersize=1
0,color='cornflowerblue')
# plt.legend(loc='upper right')
# plt.show()
pdt_rst = [0.1792628046926503, 0.2943181818181818, 0.43063362673704436, 
0.558124635993011, 0.6535518026442507, 0.713738475784049, 
0.7476984370881284, 0.7656659431653637, 0.7748492466183726, 
0.7794600206940622, 0.7817543053571258]
data_names = range(2013,2024,1)
plt.figure(figsize=(30,9),dpi=80)
plt.yticks(np.linspace(0,1,num=11,endpoint=True))
plt.xticks(range(len(data_names)),data_names)
X = range(len(data_names))
plt.ylim(0,1.2)
plt.xlim(-0.2,len(data_names)+0.2)
plt.xlabel('Year',fontsize = 15)
plt.ylabel('Resistant',fontsize=15)
plt.plot(X,pdt_rst,label='Prediction',marker='d',linewidth=2.5,marker
size=6,color='fuchsia')
# 
plt.plot(X,fit_vals,label='Fit',marker='s',linewidth=2.5,markersize=1
0,color='cornflowerblue')
plt.legend(loc='upper right')
plt.show()
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/222932.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MACBOOK 通过iterm2连接堡垒机跳转服务器

本公司是通过齐治堡垒机连接远程服务器的环境&#xff0c;因为连接过程中需要自动输入密码和选择主机&#xff0c;所以要使用expect工具&#xff0c;编写expect脚本remote.exp #!/usr/bin/expectif { $argc ! 7 } {send_user "usage: expect $argv0 \[JUMP_HOST\] \[JUM…

【贪心算法】之 摆动序列(中等题)

实际操作上&#xff0c;其实连删除的操作都不用做&#xff0c;因为题目要求的是最长摆动子序列的长度&#xff0c;所以只需要统计数组的峰值数量就可以了&#xff08;相当于是删除单一坡度上的节点&#xff0c;然后统计长度&#xff09; 这就是贪心所贪的地方&#xff0c;让峰…

Sentinel 流量治理组件教程

前言 官网首页&#xff1a;home | Sentinel (sentinelguard.io) 随着微服务的流行&#xff0c;服务和服务之间的稳定性变得越来越重要。Sentinel 是面向分布式、多语言异构化服务架构的流量治理组件&#xff0c;主要以流量为切入点&#xff0c;从流量路由、流量控制、流量整形…

【Spring Security】认证密码加密Token令牌CSRF的使用详解

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是Java方文山&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的专栏《Spring Security》。&#x1f3af;&#x1f3af; …

日志服务 SLS 深度解析:拥抱云原生和 AI,基于 SLS 的可观测分析创新

云布道师 10 月 31 日&#xff0c;杭州云栖大会上&#xff0c;日志服务 SLS 研发负责人简志和产品经理孟威等人发表了《日志服务 SLS 深度解析&#xff1a;拥抱云原生和 AI&#xff0c;基于 SLS 的可观测分析创新》的主题演讲&#xff0c;对阿里云日志服务 SLS 产品服务创新以…

在Next.js和React中搭建Cesium项目

在Next.js和React中搭建Cesium项目&#xff0c;需要确保Cesium能够与服务端渲染(SSR)兼容&#xff0c;因为Next.js默认是SSR的。Cesium是一个基于WebGL的地理信息可视化库&#xff0c;通常用于在网页中展示三维地球或地图。下面是一个基本的步骤&#xff0c;用于在Next.js项目中…

【设计模式】命令模式

其他系列文章导航 Java基础合集数据结构与算法合集 设计模式合集 多线程合集 分布式合集 ES合集 文章目录 其他系列文章导航 文章目录 前言 一、什么是命令模式&#xff1f; 二、命令模式的优点和应用场景 三、命令模式的要素和实现 3.1 命令 3.2 具体命令 3.3 接受者 …

51单片机的羽毛球计分器系统【含proteus仿真+程序+报告+原理图】

1、主要功能 该系统由AT89C51单片机LCD1602显示模块按键等模块构成。适用于羽毛球计分、乒乓球计分、篮球计分等相似项目。 可实现基本功能: 1、LCD1602液晶屏实时显示比赛信息 2、按键控制比赛的开始、暂停和结束&#xff0c;以及两位选手分数的加减。 本项目同时包含器件清…

2023 下半年系统架构设计师学习进度

文章目录 复习计划&#xff1a;每周350分钟第一周&#xff08;339分钟&#xff09;第二周&#xff08;265分钟&#xff09;第三周&#xff08;171分钟&#xff09;第四周&#xff08;214分钟&#xff09;第五周&#xff08;274分钟&#xff09;第六周&#xff08;191分钟&#…

图数据库NebulaGraph学习

1.图空间(Space)操作 1.1创建图空间&#xff0c;指定vid_type为整形 CREATE SPACE play_space (partition_num 10, replica_factor 1, vid_type INT64) COMMENT "运动员库表空间"; 1.2创建图空间&#xff0c;指定vid_type为字符串 CREATE SPACE play_space (…

深入解析Python装饰器及*args, **kwargs的妙用

深入解析Python装饰器及*args, **kwargs的妙用 简介&#xff1a; ​ 装饰器&#xff08;Decorator&#xff09;是 Python 中一种强大的语法特性&#xff0c;它允许在不修改原始函数代码的情况下&#xff0c;动态地扩展函数的功能。装饰器是函数或类&#xff0c;用于包装其他函…

Leetcode 剑指 Offer II 058. 我的日程安排表 I

题目难度: 中等 原题链接 今天继续更新 Leetcode 的剑指 Offer&#xff08;专项突击版&#xff09;系列, 大家在公众号 算法精选 里回复 剑指offer2 就能看到该系列当前连载的所有文章了, 记得关注哦~ 题目描述 请实现一个 MyCalendar 类来存放你的日程安排。如果要添加的时间内…

DevC++ easyx实现图片拖动,一种悬浮窗实现原理与完整代码

翻出来之前写的代码&#xff0c; EasyxDevC开发地图编辑和游戏编辑代码工程文件附注释_哔哩哔哩_bilibili 每次把代码备份下来&#xff0c;等着有一天能够复用代码&#xff0c;产生新的价值。 结果最近这几天才来回顾记录emm “这是怎么搓出来的&#xff1f;”从10行代码到…

虚拟机安装

带你解密Linux的【Vm】-CSDN博客https://blog.csdn.net/lz17267861157/article/details/134031133

音画欣赏|《同杯万古尘》

《同杯万古尘》 尺寸&#xff1a;69x35cm 陈可之2023年绘 《拟古十二首-其九》 李白 生者为过客&#xff0c;死者为归人。 天地一逆旅&#xff0c;同悲万古尘。 月兔空捣药&#xff0c;扶桑已成薪。 白骨寂无言&#xff0c;青松岂知春。 前后更叹息&#xff0c;浮荣安足珍&am…

如何在Windows上搭建WebDAV服务并通过内网穿透实现公网访问

文章目录 前言1. 安装IIS必要WebDav组件2. 客户端测试3. 使用cpolar内网穿透&#xff0c;将WebDav服务暴露在公网3.1 安装cpolar内网穿透3.2 配置WebDav公网访问地址 4. 映射本地盘符访问 前言 在Windows上如何搭建WebDav&#xff0c;并且结合cpolar的内网穿透工具实现在公网访…

基于python的excel检查和读写软件

软件版本&#xff1a;python3.6 窗口和界面gui代码&#xff1a; class mygui:def _init_(self):passdef run(self):root Tkinter.Tk()root.title(ExcelRun)max_w, max_h root.maxsize()root.geometry(f500x500{int((max_w - 500) / 2)}{int((max_h - 300) / 2)}) # 居中显示…

Linux 一键部署二进制Gitea

gitea 前言 Gitea 是一个轻量级的 DevOps 平台软件。从开发计划到产品成型的整个软件生命周期,他都能够高效而轻松的帮助团队和开发者。包括 Git 托管、代码审查、团队协作、软件包注册和 CI/CD。它与 GitHub、Bitbucket 和 GitLab 等比较类似。 Gitea 最初是从 Gogs 分支而来…

Qt WebAssembly开发环境配置

目录 前言1、下载Emscripten SDK2、 安装3、环境变量配置4、QtCreator配置5、运行示例程序总结 前言 本文主要介绍 Qt WebAssembly 开发环境的配置。Qt for Webassembly 可以使Qt应用程序在Web上运行。WebAssembly&#xff08;简称Wasm&#xff09;是一种能够在虚拟机中执行的…

使用Java语言中的算法输出杨辉三角形

一、算法思想 创建一个名为YanghuiTest的类,然后创建二维数组&#xff0c;然后遍历二维数组的第一层&#xff0c;然后初始化第二层数组的大小&#xff0c;然后遍历第二层数组&#xff0c;然后将两侧的数组元素赋为1&#xff0c;然后其它数值通过公式计算&#xff0c;最后可以输…