大创项目推荐 深度学习+python+opencv实现动物识别 - 图像识别

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 卷积神经网络
    • 3.1卷积层
    • 3.2 池化层
    • 3.3 激活函数:
    • 3.4 全连接层
    • 3.5 使用tensorflow中keras模块实现卷积神经网络
  • 4 inception_v3网络
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的动物识别算法 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

利用深度学习对野生动物进行自动识别分类,可以大大提高野生动物监测效率,为野生动物保护策略的制定提供可靠的数据支持。但是目前野生动物的自动识别仍面临着监测图像背景信息复杂、质量低造成的识别准确率低的问题,影响了深度学习技术在野生动物保护领域的应用落地。为了实现高准确率的野生动物自动识别,本项目基于卷积神经网络实现图像动物识别。

2 实现效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 卷积神经网络

受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。
在这里插入图片描述

3.1卷积层

卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。
在这里插入图片描述

3.2 池化层

池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。
在这里插入图片描述

3.3 激活函数:

激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体

3.4 全连接层

在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。

3.5 使用tensorflow中keras模块实现卷积神经网络

class CNN(tf.keras.Model):def __init__(self):super().__init__()self.conv1 = tf.keras.layers.Conv2D(filters=32,             # 卷积层神经元(卷积核)数目kernel_size=[5, 5],     # 感受野大小padding='same',         # padding策略(vaild 或 same)activation=tf.nn.relu   # 激活函数)self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.conv2 = tf.keras.layers.Conv2D(filters=64,kernel_size=[5, 5],padding='same',activation=tf.nn.relu)self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)self.dense2 = tf.keras.layers.Dense(units=10)def call(self, inputs):x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]x = self.pool1(x)                       # [batch_size, 14, 14, 32]x = self.conv2(x)                       # [batch_size, 14, 14, 64]x = self.pool2(x)                       # [batch_size, 7, 7, 64]x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]x = self.dense1(x)                      # [batch_size, 1024]x = self.dense2(x)                      # [batch_size, 10]output = tf.nn.softmax(x)return output

4 inception_v3网络

简介
如果 ResNet 是为了更深,那么 Inception 家族就是为了更宽。Inception
的作者对训练更大型网络的计算效率尤其感兴趣。换句话说:怎样在不增加计算成本的前提下扩展神经网络?

网路结构图
在这里插入图片描述
主要改动
在这里插入图片描述

  • 将7×7卷积分解为3个3×3的卷积。
  • 35×35的Inception模块采用图1所示结构,之后采用图5类似结构进行下采样
  • 17×17的Inception模块采用图2所示结构,也是采用图5类似结构下采样
  • 8×8的Inception模块采用图3所示结构,进行较大维度的提升。

Tensorflow实现代码

import osimport kerasimport numpy as npimport tensorflow as tffrom tensorflow.keras import layersfrom tensorflow.keras.models import Modelconfig = tf.compat.v1.ConfigProto()config.gpu_options.allow_growth = True      # TensorFlow按需分配显存config.gpu_options.per_process_gpu_memory_fraction = 0.5  # 指定显存分配比例inceptionV3_One={'1a':[64,48,64,96,96,32],'2a':[64,48,64,96,96,64],'3a':[64,48,64,96,96,64]}inceptionV3_Two={'1b':[192,128,128,192,128,128,128,128,192,192],'2b':[192,160,160,192,160,160,160,160,192,192],'3b':[192,160,160,192,160,160,160,160,192,192],'4b':[192,192,192,192,192,192,192,192,192,192]}keys_two=(list)(inceptionV3_Two.keys())inceptionV3_Three={'1c':[320,384,384,384,448,384,384,384,192],'2c':[320,384,384,384,448,384,384,384,192]}keys_three=(list)(inceptionV3_Three.keys())def InceptionV3(inceptionV3_One,inceptionV3_Two,inceptionV3_Three):keys_one=(list)(inceptionV3_One.keys())keys_two = (list)(inceptionV3_Two.keys())keys_three = (list)(inceptionV3_Three.keys())input=layers.Input(shape=[299,299,3])# 输入部分conv1_one = layers.Conv2D(32, kernel_size=[3, 3], strides=[2, 2], padding='valid')(input)conv1_batch=layers.BatchNormalization()(conv1_one)conv1relu=layers.Activation('relu')(conv1_batch)conv2_one = layers.Conv2D(32, kernel_size=[3, 3], strides=[1,1],padding='valid')(conv1relu)conv2_batch=layers.BatchNormalization()(conv2_one)conv2relu=layers.Activation('relu')(conv2_batch)conv3_padded = layers.Conv2D(64, kernel_size=[3, 3], strides=[1,1],padding='same')(conv2relu)conv3_batch=layers.BatchNormalization()(conv3_padded)con3relu=layers.Activation('relu')(conv3_batch)pool1_one = layers.MaxPool2D(pool_size=[3, 3], strides=[2, 2])(con3relu)conv4_one = layers.Conv2D(80, kernel_size=[3,3], strides=[1,1], padding='valid')(pool1_one)conv4_batch=layers.BatchNormalization()(conv4_one)conv4relu=layers.Activation('relu')(conv4_batch)conv5_one = layers.Conv2D(192, kernel_size=[3, 3], strides=[2,2], padding='valid')(conv4relu)conv5_batch = layers.BatchNormalization()(conv5_one)x=layers.Activation('relu')(conv5_batch)"""filter11:1x1的卷积核个数filter13:3x3卷积之前的1x1卷积核个数filter33:3x3卷积个数filter15:使用3x3卷积代替5x5卷积之前的1x1卷积核个数filter55:使用3x3卷积代替5x5卷积个数filtermax:最大池化之后的1x1卷积核个数"""for i in range(3):conv11 = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][0]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)batchnormaliztion11 = layers.BatchNormalization()(conv11)conv11relu = layers.Activation('relu')(batchnormaliztion11)conv13 = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][1]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)batchnormaliztion13 = layers.BatchNormalization()(conv13)conv13relu = layers.Activation('relu')(batchnormaliztion13)conv33 = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][2]), kernel_size=[5, 5], strides=[1, 1], padding='same')(conv13relu)batchnormaliztion33 = layers.BatchNormalization()(conv33)conv33relu = layers.Activation('relu')(batchnormaliztion33)conv1533 = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][3]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)batchnormaliztion1533 = layers.BatchNormalization()(conv1533)conv1522relu = layers.Activation('relu')(batchnormaliztion1533)conv5533first = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][4]), kernel_size=[3, 3], strides=[1, 1], padding='same')(conv1522relu)batchnormaliztion5533first = layers.BatchNormalization()(conv5533first)conv5533firstrelu = layers.Activation('relu')(batchnormaliztion5533first)conv5533last = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][4]), kernel_size=[3, 3], strides=[1, 1], padding='same')(conv5533firstrelu)batchnormaliztion5533last = layers.BatchNormalization()(conv5533last)conv5533lastrelu = layers.Activation('relu')(batchnormaliztion5533last)maxpool = layers.AveragePooling2D(pool_size=[3, 3], strides=[1, 1], padding='same')(x)maxconv11 = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][5]), kernel_size=[1, 1], strides=[1, 1], padding='same')(maxpool)batchnormaliztionpool = layers.BatchNormalization()(maxconv11)convmaxrelu = layers.Activation('relu')(batchnormaliztionpool)x=tf.concat([conv11relu,conv33relu,conv5533lastrelu,convmaxrelu],axis=3)conv1_two = layers.Conv2D(384, kernel_size=[3, 3], strides=[2, 2], padding='valid')(x)conv1batch=layers.BatchNormalization()(conv1_two)conv1_tworelu=layers.Activation('relu')(conv1batch)conv2_two = layers.Conv2D(64, kernel_size=[1, 1], strides=[1, 1], padding='same')(x)conv2batch=layers.BatchNormalization()(conv2_two)conv2_tworelu=layers.Activation('relu')(conv2batch)conv3_two = layers.Conv2D( 96, kernel_size=[3, 3], strides=[1,1], padding='same')(conv2_tworelu)conv3batch=layers.BatchNormalization()(conv3_two)conv3_tworelu=layers.Activation('relu')(conv3batch)conv4_two = layers.Conv2D( 96, kernel_size=[3, 3], strides=[2, 2], padding='valid')(conv3_tworelu)conv4batch=layers.BatchNormalization()(conv4_two)conv4_tworelu=layers.Activation('relu')(conv4batch)maxpool = layers.MaxPool2D(pool_size=[3, 3], strides=[2, 2])(x)x=tf.concat([conv1_tworelu,conv4_tworelu,maxpool],axis=3)"""filter11:1x1的卷积核个数filter13:使用1x3,3x1卷积代替3x3卷积之前的1x1卷积核个数filter33:使用1x3,3x1卷积代替3x3卷积的个数filter15:使用1x3,3x1,1x3,3x1卷积卷积代替5x5卷积之前的1x1卷积核个数filter55:使用1x3,3x1,1x3,3x1卷积代替5x5卷积个数filtermax:最大池化之后的1x1卷积核个数"""for i in range(4):conv11 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][0]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)batchnormaliztion11 = layers.BatchNormalization()(conv11)conv11relu=layers.Activation('relu')(batchnormaliztion11)conv13 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][1]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)batchnormaliztion13 = layers.BatchNormalization()(conv13)conv13relu=layers.Activation('relu')(batchnormaliztion13)conv3313 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][2]), kernel_size=[1, 7], strides=[1, 1], padding='same')(conv13relu)batchnormaliztion3313 = layers.BatchNormalization()(conv3313)conv3313relu=layers.Activation('relu')(batchnormaliztion3313)conv3331 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][3]), kernel_size=[7, 1], strides=[1, 1], padding='same')(conv3313relu)batchnormaliztion3331 = layers.BatchNormalization()(conv3331)conv3331relu=layers.Activation('relu')(batchnormaliztion3331)conv15 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][4]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)batchnormaliztion15 = layers.BatchNormalization()(conv15)conv15relu=layers.Activation('relu')(batchnormaliztion15)conv1513first = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][5]), kernel_size=[1, 7], strides=[1, 1], padding='same')(conv15relu)batchnormaliztion1513first = layers.BatchNormalization()(conv1513first)conv1513firstrelu=layers.Activation('relu')(batchnormaliztion1513first)conv1531second = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][6]), kernel_size=[7, 1], strides=[1, 1], padding='same')(conv1513firstrelu)batchnormaliztion1531second = layers.BatchNormalization()(conv1531second)conv1531second=layers.Activation('relu')(batchnormaliztion1531second)conv1513third = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][7]), kernel_size=[1, 7], strides=[1, 1], padding='same')(conv1531second)batchnormaliztion1513third = layers.BatchNormalization()(conv1513third)conv1513thirdrelu=layers.Activation('relu')(batchnormaliztion1513third)conv1531last = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][8]), kernel_size=[7, 1], strides=[1, 1], padding='same')(conv1513thirdrelu)batchnormaliztion1531last = layers.BatchNormalization()(conv1531last)conv1531lastrelu=layers.Activation('relu')(batchnormaliztion1531last)maxpool = layers.AveragePooling2D(pool_size=[3, 3], strides=[1, 1], padding='same')(x)maxconv11 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][9]), kernel_size=[1, 1], strides=[1, 1], padding='same')(maxpool)maxconv11relu = layers.BatchNormalization()(maxconv11)maxconv11relu = layers.Activation('relu')(maxconv11relu)x=tf.concat([conv11relu,conv3331relu,conv1531lastrelu,maxconv11relu],axis=3)conv11_three=layers.Conv2D(192, kernel_size=[1, 1], strides=[1, 1], padding='same')(x)conv11batch=layers.BatchNormalization()(conv11_three)conv11relu=layers.Activation('relu')(conv11batch)conv33_three=layers.Conv2D(320, kernel_size=[3, 3], strides=[2, 2], padding='valid')(conv11relu)conv33batch=layers.BatchNormalization()(conv33_three)conv33relu=layers.Activation('relu')(conv33batch)conv7711_three=layers.Conv2D(192, kernel_size=[1, 1], strides=[1, 1], padding='same')(x)conv77batch=layers.BatchNormalization()(conv7711_three)conv77relu=layers.Activation('relu')(conv77batch)conv7717_three=layers.Conv2D(192, kernel_size=[1, 7], strides=[1, 1], padding='same')(conv77relu)conv7717batch=layers.BatchNormalization()(conv7717_three)conv7717relu=layers.Activation('relu')(conv7717batch)conv7771_three=layers.Conv2D(192, kernel_size=[7, 1], strides=[1, 1], padding='same')(conv7717relu)conv7771batch=layers.BatchNormalization()(conv7771_three)conv7771relu=layers.Activation('relu')(conv7771batch)conv33_three=layers.Conv2D(192, kernel_size=[3, 3], strides=[2, 2], padding='valid')(conv7771relu)conv3377batch=layers.BatchNormalization()(conv33_three)conv3377relu=layers.Activation('relu')(conv3377batch)convmax_three=layers.MaxPool2D(pool_size=[3, 3], strides=[2, 2])(x)x=tf.concat([conv33relu,conv3377relu,convmax_three],axis=3)"""filter11:1x1的卷积核个数filter13:使用1x3,3x1卷积代替3x3卷积之前的1x1卷积核个数filter33:使用1x3,3x1卷积代替3x3卷积的个数filter15:使用3x3卷积代替5x5卷积之前的1x1卷积核个数filter55:使用3x3卷积代替5x5卷积个数filtermax:最大池化之后的1x1卷积核个数"""for i in range(2):conv11 = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][0]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)batchnormaliztion11 = layers.BatchNormalization()(conv11)conv11relu=layers.Activation('relu')(batchnormaliztion11)conv13 = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][1]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)batchnormaliztion13 = layers.BatchNormalization()(conv13)conv13relu=layers.Activation('relu')(batchnormaliztion13)conv33left = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][2]), kernel_size=[1, 3], strides=[1, 1], padding='same')(conv13relu)batchnormaliztion33left = layers.BatchNormalization()(conv33left)conv33leftrelu=layers.Activation('relu')(batchnormaliztion33left)conv33right = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][3]), kernel_size=[3, 1], strides=[1, 1], padding='same')(conv33leftrelu)batchnormaliztion33right = layers.BatchNormalization()(conv33right)conv33rightrelu=layers.Activation('relu')(batchnormaliztion33right)conv33rightleft=tf.concat([conv33leftrelu,conv33rightrelu],axis=3)conv15 = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][4]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)batchnormaliztion15 = layers.BatchNormalization()(conv15)conv15relu=layers.Activation('relu')(batchnormaliztion15)conv1533 = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][5]), kernel_size=[3, 3], strides=[1, 1], padding='same')(conv15relu)batchnormaliztion1533 = layers.BatchNormalization()(conv1533)conv1533relu=layers.Activation('relu')(batchnormaliztion1533)conv1533left = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][6]), kernel_size=[1, 3], strides=[1, 1], padding='same')(conv1533relu)batchnormaliztion1533left = layers.BatchNormalization()(conv1533left)conv1533leftrelu=layers.Activation('relu')(batchnormaliztion1533left)conv1533right = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][6]), kernel_size=[3, 1], strides=[1, 1], padding='same')(conv1533leftrelu)batchnormaliztion1533right = layers.BatchNormalization()(conv1533right)conv1533rightrelu=layers.Activation('relu')(batchnormaliztion1533right)conv1533leftright=tf.concat([conv1533right,conv1533rightrelu],axis=3)maxpool = layers.AveragePooling2D(pool_size=[3, 3], strides=[1, 1],padding='same')(x)maxconv11 = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][8]), kernel_size=[1, 1], strides=[1, 1], padding='same')(maxpool)batchnormaliztionpool = layers.BatchNormalization()(maxconv11)maxrelu = layers.Activation('relu')(batchnormaliztionpool)x=tf.concat([conv11relu,conv33rightleft,conv1533leftright,maxrelu],axis=3)x=layers.GlobalAveragePooling2D()(x)x=layers.Dense(1000)(x)softmax=layers.Activation('softmax')(x)model_inceptionV3=Model(inputs=input,outputs=softmax,name='InceptionV3')return model_inceptionV3model_inceptionV3=InceptionV3(inceptionV3_One,inceptionV3_Two,inceptionV3_Three)model_inceptionV3.summary()

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/223189.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Java (spring-boot)的在线考试管理系统

一、项目介绍 系统功能说明 1、系统共有管理员、老师、学生三个角色,管理员拥有系统最高权限。 2、老师拥有考试管理、题库管理、成绩管理、学生管理四个模块。 3、学生可以参与考试、查看成绩、试题练习、留言等功能 二、作品包含 三、项目技术 后端语言&#xff1…

【二】【C语言\动态规划】解码方法、不同路径、不同路径II,三道题目深度解析

动态规划 动态规划就像是解决问题的一种策略,它可以帮助我们更高效地找到问题的解决方案。这个策略的核心思想就是将问题分解为一系列的小问题,并将每个小问题的解保存起来。这样,当我们需要解决原始问题的时候,我们就可以直接利…

CSS3多列分页属性

CSS3多列 Firefox浏览器支持该属性的形式是-moz-column-count,而基于Webkit的浏览器,例如Safari和Chrome,支持该属性的形式是-webkit-column-count column-count:该属性定义多列文本流中的栏数 语法:column-count:int…

本地websocket服务端结合cpolar内网穿透实现公网访问

文章目录 1. Java 服务端demo环境2. 在pom文件引入第三包封装的netty框架maven坐标3. 创建服务端,以接口模式调用,方便外部调用4. 启动服务,出现以下信息表示启动成功,暴露端口默认99995. 创建隧道映射内网端口6. 查看状态->在线隧道,复制所创建隧道的公网地址加端口号7. 以…

「数据结构」二叉树2

🎇个人主页:Ice_Sugar_7 🎇所属专栏:初阶数据结构 🎇欢迎点赞收藏加关注哦! 文章目录 🍉前言🍉链式结构🍉遍历二叉树🍌前序遍历🍌中序遍历&#x…

Qt 多线程用法

文章目录 开发平台QThread 类 moveToThreadQtConcurrent::run QFutureWatcherQThreadPool QRunnable 开发平台 项目说明OSwin10 x64Qt6.6compilermsvc2022构建工具cmake QThread 类 moveToThread 写一个简单的例子吧,比较容易理解,方便入门. 也可以看出这种方式,对于线程…

Polygon zkEVM Spearbit审计报告解读(2022年12月版本)

1. 引言 前序博客: Polygon zkEVM Hexens审计报告解读(2022年12月至2023年2月版本) 主要见: Polygon zkEVM Security Review: December 2022 Engagement Polygon zkEVM为提供(opcode层面兼容的)EVM等价…

Linux学习小结

目录结构 tree -L 1 / # /root #root用户的家目录 /home #存储普通用户家目录 lostfound #这个目录平时是空的,存储系统非正常关机而留下“无家可归”的文件 /usr #系统文件,相当于C:\Windows /usr/local #软件安装的目录,相当于C:\Progra…

Ubuntu-20.04.2 mate 上安装、配置、测试 qtcreator

一、从repo中安装 Ubuntu-20.04.2的repo中,qtcreator安装包挺全乎的,敲完 sudo apt install qtcreator 看一下同时安装和新软件包将被安装列表,压缩包252MB,解压安装后933MB,集大成的一包。 sudo apt install qtcrea…

使用Java语言解决古典猴子分桃问题

一、主要思想 五只猴子分桃 第一只猴子呀 平均分成五分 挤出来多一个 多的扔入海中 拿了其中一份 来了五只猴子 均是如此操作 第五只猴子呀 还存有多少只 二、基本代码 public class MonkeyPeach {public static void main(String[] args){int n 1;int m 0;int flag1;int…

uniapp如何原生app-云打包

首先第一步,需要大家在HBuilder X中找到一个项目,然后呢在找到上面的发行选项 发行->原生App-云打包 选择完该选中的直接大包就ok。 大包完毕后呢,会出现一个apk包,这是后将这个包拖动发给随便一个人就行了。 然后接收到的那…

【5G PHY】NR参考信号功率和小区总传输功率的计算

博主未授权任何人或组织机构转载博主任何原创文章,感谢各位对原创的支持! 博主链接 本人就职于国际知名终端厂商,负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作,目前牵头6G算力网络技术标准研究。 博客…

初识Docker-什么是docker

Docker是一个快速交付应用、运行应用的技术 目录 一、Docker 二、运用场景 一、什么是Docker?它的作用是什么? Docker如何解决大型项目依赖关系复杂,不同组件依赖的兼容性问题? Docker允许开发中将应用、依赖、函数库、配置一起打包&…

MySQL中CASE when 实战

CASE 语法 CASEWHEN condition1 THEN result1WHEN condition2 THEN result2WHEN conditionN THEN resultNELSE result END; 将表中的内容转换为右边的形式: 1、创建表,创建数据 CREATE TABLEchapter10_7 (order_id VARCHAR(255) NULL,price VARCHAR(25…

阿里云经济型、通用算力型、计算型、通用型、内存型云服务器最新活动报价

阿里云作为国内领先的云计算服务提供商,提供了多种规格的云服务器供用户选择。为了满足不同用户的需求,阿里云推出了经济型、通用算力型、计算型、通用型和内存型等不同类型的云服务器。下面将详细介绍这些云服务器的最新活动报价。 一、阿里云特惠云服…

实验一传统的结构化的软件工程方法、实验二面向对象的软件工程、实验三软件测试

背景: 实验一 传统的结构化的软件工程方法 1实验目的 了解传统的软件工程方法的基本原理,掌握软件生命周期的全过程依次划分为需求分析、总体设计、详细设计、编码、测试、维护等几个重要阶段。每个阶段所要完成的任务以及提交的文档。 2实验内容 …

25、新加坡南洋理工、新加坡国立大学提出FBCNet:完美融合FBCSP的CNN,EEG解码SOTA水准![抱歉老师,我太想进步了!]

前言: 阴阳差错,因工作需要,需要查阅有关如何将FBCSP融入CNN中的文献,查阅全网,发现只此一篇文章,心中大喜,心想作者哪家单位,读之,原来是自己大导(新加坡工…

OpenAI 官方 Prompt 工程指南:写好 Prompt 的六个策略

其实一直有很多人问我,Prompt 要怎么写效果才好,有没有模板。 我每次都会说,能清晰的表达你的想法,才是最重要的,各种技巧都是其次。但是,我还是希望发给他们一些靠谱的文档。 但是,网上各种所…

渗透实验 XSS和SQL注入(Lab3.0)

windows server2003IIS搭建 配置2003的虚拟机 1、利用AWVS扫描留言簿网站(安装见参考文档0.AWVS安装与使用.docx),发现其存在XSS漏洞,截图。 2、 Kali使用beef生成恶意代码 cd /usr/share/beef-xss./beef执行上面两条命令 …