最小二乘法简介

最小二乘法简介

    • 1、背景描述
    • 2、最小二乘法
      • 2.1、最小二乘准则
      • 2.2、最小二乘法
    • 3、最小二乘法与线性回归
      • 3.1、最小二乘法与线性回归
      • 3.2、最小二乘法与最大似然估计
    • 4、正态分布(高斯分布)



1、背景描述


在工程应用中,我们通常会用一组观测数据去估计模型的参数,模型是我们根据经验知识预先给定的。例如,我们有一组观测数据 ( x i , y i ) (x_i,y_i) (xi,yi),通过简单分析,我们猜测y与x之间存在线性关系,那么我们的模型可以给定为:
y = k x + b y=kx+b y=kx+b

该模型只有两个参数,理论上,我们只需要通过两组观测值建立二元一次方程组即可求解。类似的,如果模型有n个参数,我们只需要n组观测值即可求解。换句话说,这种情况下,模型的参数是唯一确定解

但是,在实际应用中,由于我们的观测会存在误差(偶然误差、系统误差等),所以我们总会做更多观测。例如,在上述例子中,尽管只有两个参数,但是我们可能会观测n组数据: ( x 0 , y 0 ) 、 ( x 1 , y 1 ) 、 . . . 、 ( x n − 1 , y n − 1 ) (x_0,y_0)、(x_1,y_1)、...、(x_{n-1},y_{n-1}) (x0,y0)(x1,y1)...(xn1,yn1),这会导致我们无法找到一条直线经过所有的点,也就是说,方程无确定解
在这里插入图片描述

于是,这就是我们要解决的问题:虽然没有确定解,但是我们能不能求出近似解,使得模型能在各个观测点上达到“最佳“拟合

那么“最佳”的准则是什么?可以是所有观测点到直线的距离和最小,也可以是所有观测点到直线预测点(真实值-理论值)的绝对值和最小,还可以是所有观测点到直线预测点(真实值-理论值)的平方和最小

在这里插入图片描述

2、最小二乘法

2.1、最小二乘准则


19世纪初(1806年),法国科学家勒让德发明了“最小二乘法”。勒让德认为,让误差(真实值-理论值)的平方和最小估计出来的模型是最接近真实情形的。换句话说,勒让德认为最佳的拟合准则是使 y i y_i yi y = f ( x i ) y=f(x_i) y=f(xi)的距离的平方和最小:
L = ∑ i = 1 m ( y i − f ( x i ) ) 2 L=\sum_{i=1}^m(y_i-f(x_i))^2 L=i=1m(yif(xi))2

这个准则也被称为最小二乘准则。这个目标函数取得最小值时的函数参数,就是最小二乘法的思想,所谓“二乘”就是平方的意思

勒让德在原文中提到:使误差平方和达到最小,在各方程的误差之间建立了一种平衡,从而防止了某一极端误差取得支配地位,而这有助于揭示系统的更接近真实的状态

至于为什么最佳准则就是误差平方而不是其它的,勒让德当时并没有给出解释,直到后来高斯建立了正态误差分析理论才成功回答了该问题

在这里插入图片描述

1829年,高斯建立了一套误差分析理论,从而证明了确实是使误差(真实值-理论值)平方和最小的情况下系统是最优的

误差分析理论其实说到底就一个结论:观察值的误差服从标准正态分布,即 ϵ ∈ N ( 0 , 1 ) ϵ∈N(0,1) ϵN(0,1)

关于正态分布的介绍见本文第4节

2.2、最小二乘法


最小二乘法就是一个数学公式,在数学上称为曲线拟合,不仅包括线性回归方程,还包括矩阵的最小二乘法

最小二乘法是解决曲线拟合问题最常用的方法。令

在这里插入图片描述

其中, φ k ( x ) \varphi_k(x) φk(x)是事先选定的一组线性无关的函数, a k a_k ak是待定系数 ( k = 1 , 2 , . . . , m , m < n ) (k=1,2,...,m,m<n) (k=1,2,...,m,m<n),拟合准则是使 y i ( i = 1 , 2 , . . . , n ) y_i(i=1,2,...,n) yi(i=1,2,...,n) f ( x i ) f(x_i) f(xi)的距离 δ i \delta_i δi的平方和最小,称为最小二乘准则

百度百科词条给出的基本原理如下:

在这里插入图片描述

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和最小

最小二乘法是一种在误差估计、不确定度、系统辨识及预测、预报等数据处理诸多学科领域得到广泛应用的数学工具

3、最小二乘法与线性回归

3.1、最小二乘法与线性回归


对于勒让德给定的最佳拟合准则,我们可以看到,最小二乘法其实就是用来做函数拟合的一种思想。至于如何求解具体的参数那就是另外一个问题了

最小二乘法的本质是一种数学思想,它可以拟合任意函数。而线性回归只是其中一个比较简单且常用的函数,所以讲最小二乘法基本都会以线性回归为例

线性回归因为比较简单,可以直接推导出解析解,而且许多非线性的问题也可以转化为线性问题来解决,所以得到了广泛的应用

线性回归简介见文章:传送门

3.2、最小二乘法与最大似然估计


最大似然估计:最大化给定样本集发生的概率,即就是极大化似然函数(Likelihood Function),而似然函数就是样本的联合概率。由于我们通常都会假设样本是相互独立的,因此联合概率就等于每个样本发生的概率乘积

假设我们有m组观测数据 ( x 1 , y 1 ) , . . . , ( x m , y m ) (x_1,y_1),...,(x_m,y_m) (x1,y1),...,(xm,ym),我们猜测其关系符合:
y = k x + b y=kx+b y=kx+b
假设真实值与预测值之间的误差为:
ε i = y i − y = y i − f ( x i ) \varepsilon_i=y_i-y=y_i-f(x_i) εi=yiy=yif(xi)
根据高斯的误差分析理论,观测值的误差服从标准正态分布(见文末),即给定一个 x i x_i xi,模型输出真实值 y i y_i yi的概率为:
p ( y i ∣ x i ) = 1 2 π e − ε i 2 2 p(y_i|x_i)=\frac{1}{\sqrt{2\pi}}e^{-\frac{\varepsilon_i^2}{2}} p(yixi)=2π 1e2εi2

则根据最大似然估计(似然函数)有:
L ( ω ) = ∏ i = 1 m p ( y i ∣ x i ) = ∏ i = 1 m 1 2 π e − ε i 2 2 L(\omega)=\prod_{i=1}^mp(y_i|x_i)=\prod_{i=1}^m\frac{1}{\sqrt{2\pi}}e^{-\frac{\varepsilon_i^2}{2}} L(ω)=i=1mp(yixi)=i=1m2π 1e2εi2

两边取对数得:
J ( ω ) = l n ( L ( ω ) ) = ∑ i = 1 m l n ( 1 2 π e − ε i 2 2 ) = ∑ i = 1 m l n 1 2 π − 1 2 ∑ i = 1 m ε i 2 J(\omega)=ln(L(\omega)) = \sum_{i=1}^mln(\frac{1}{\sqrt{2\pi}}e^{-\frac{\varepsilon_i^2}{2}}) = \sum_{i=1}^mln\frac{1}{\sqrt{2\pi}}-\frac{1}{2}\sum_{i=1}^m\varepsilon_i^2 J(ω)=ln(L(ω))=i=1mln(2π 1e2εi2)=i=1mln2π 121i=1mεi2

去掉无关常数项得:
J ( ω ) = l n ( L ( ω ) ) = − 1 2 ∑ i = 1 m ε i 2 = − 1 2 ∑ i = 1 m ( y i − f ( x i ) ) 2 J(\omega)=ln(L(\omega))=-\frac{1}{2}\sum_{i=1}^m\varepsilon_i^2=-\frac{1}{2}\sum_{i=1}^m(y_i-f(x_i))^2 J(ω)=ln(L(ω))=21i=1mεi2=21i=1m(yif(xi))2

要使 L ( ω ) L(\omega) L(ω)(概率)最大,即 J ( ω ) J(\omega) J(ω)最大,则使下面多项式结果最小即可:
∑ i = 1 m ( y i − f ( x i ) ) 2 \sum_{i=1}^m(y_i-f(x_i))^2 i=1m(yif(xi))2

上述结果表明:最大似然估计(似然函数)等价于最小二乘法,这也表明了以误差平方和作为最佳拟合准则的合理性

因此我们可以说,最小二乘法其实就是误差满足正态(高斯)分布的极大似然估计,最小化误差平方本质上等同于在误差服从正态(高斯)分布的假设下的最大似然估计

4、正态分布(高斯分布)


正态分布(Normal Distribution),也称高斯分布(Gaussian Distribution),其曲线呈钟型,两头低,中间高,左右对称,因此也被称为钟形曲线

定义:若连续型随机变量x有如下形式的密度函数:

在这里插入图片描述
则称x服从参数为 ( μ , σ 2 ) (\mu,\sigma^2) (μ,σ2)的正态分布(Normal Distribution),记为 X − N ( μ , σ 2 ) X-N(\mu,\sigma^2) XN(μ,σ2)

在这里插入图片描述

性质

  • 关于 x = μ x=μ x=μ 对称,在 x = μ x=μ x=μ 处达到最大值 1 2 π σ \frac{1}{\sqrt{2\pi}\sigma} 2π σ1,越远离 μ μ μ,密度函数值越小
  • 数学期望(均值)为 μ μ μ,标准差为 σ \sigma σ,方差为 σ 2 \sigma^2 σ2

标准正态分布:又称 μ μ μ分布,是以0为均值(数学期望)、以1为标准差的正态分布,记为 X − N ( 0 , 1 ) X-N(0,1) XN(0,1),密度函数:

在这里插入图片描述



参考文章:
https://blog.csdn.net/MoreAction_/article/details/106443383
https://blog.csdn.net/MoreAction_/article/details/121591653
https://blog.csdn.net/qq_46092061/article/details/119136137

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/223232.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

电商数仓项目----笔记六(数仓ODS层)

ODS层的设计要点如下&#xff1a; &#xff08;1&#xff09;ODS层的表结构设计依托于从业务系统同步过来的数据结构。 &#xff08;2&#xff09;ODS层要保存全部历史数据&#xff0c;故其压缩格式应选择压缩比较高的&#xff0c;此处选择gzip。 &#xff08;3&#xff09;…

C++入门-【13-C++ 多维数组】

C 多维数组 C 支持多维数组。多维数组声明的一般形式如下&#xff1a; type name[size1][size2]...[sizeN]; 例如&#xff0c;下面的声明创建了一个三维 5 . 10 . 4 整型数组&#xff1a; int threedim[5][10][4]; 二维数组 多维数组最简单的形式是二维数组。一个二维数组&am…

用23种设计模式打造一个cocos creator的游戏框架----(二十三)中介者模式

1、模式标准 模式名称&#xff1a;中介者模式 模式分类&#xff1a;行为型 模式意图&#xff1a;用一个中介对象来封装一系列的对象交互。中介者使各对象不需要显式地相互引用&#xff0c;从而使其耦合松散&#xff0c;而且可以独立地改变它们之间的交互。 结构图&#xff…

竞赛保研 基于GRU的 电影评论情感分析 - python 深度学习 情感分类

文章目录 1 前言1.1 项目介绍 2 情感分类介绍3 数据集4 实现4.1 数据预处理4.2 构建网络4.3 训练模型4.4 模型评估4.5 模型预测 5 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于GRU的 电影评论情感分析 该项目较为新颖&#xff0c;适合作为竞…

Linux基本指令(一)

前言 基本知识 文件文件内容文件属性(对文件的操作就是对这两部分进行操作) 在Linux中以 . 开头的文件叫隐藏文件 以-开头的是普通文件 以d开头的是目录文件 几个指令 先快速认识几个指令&#xff0c;方便后续的详细介绍 whoami 查看当前使用Linux系统的用户是谁 pwd …

要参加微软官方 Copilot 智能编程训练营了

GitHub Copilot 是由 GitHub、OpenAI 和 Microsoft 联合开发的生成式 AI 模型驱动的。 GitHub Copilot 分析用户正在编辑的文件及相关文件的上下文&#xff0c;并在编写代码时提供自动补全式的建议。 刚好下周要参加微软官方组织的 GitHub Copilot 工作坊-智能编程训练营&…

【51单片机系列】C51中的中断系统扩展实验

本文是关于51单片机中断系统的扩展实验。 文章目录 一、 扩展实验一&#xff1a;使用外部中断0控制蜂鸣器&#xff0c;外部中断1控制直流电机二、扩展实验二&#xff1a;修改定时器初值&#xff0c;设定3秒钟的定时时间让LED模块闪烁三、扩展实验三&#xff1a;使用定时器1和数…

法线贴图实现地形模型皱褶、凹凸不平的纹理效果

在线工具推荐&#xff1a; 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 法线贴图在3D建模中扮演着重要的角色&#xff0c;它通过模拟表面的微…

(十七)Flask之大型项目目录结构示例【二扣蓝图】

大型项目目录结构&#xff1a; 问题引入&#xff1a; 在上篇文章讲蓝图的时候我给了一个demo项目&#xff0c;其中templates和static都各自只有一个&#xff0c;这就意味着所有app的模板和静态文件都放在了一起&#xff0c;如果项目比较大的话&#xff0c;这就非常乱&#xf…

Canal使用详解

Canal介绍 Canal是阿里巴巴开发的MySQL binlog增量订阅&消费组件&#xff0c;Canal是基于MySQL二进制日志的高性能数据同步系统。在阿里巴巴集团中被广泛使用&#xff0c;以提供可靠的低延迟增量数据管道。Canal Server能够解析MySQL Binlog并订阅数据更改&#xff0c;而C…

springboot集成websocket全全全!!!

一、界面展示 二、前置了解 1.什么是websocket WebSocket是一种在单个TCP连接上进行全双工通信的持久化协议。 全双工协议就是客户端可以给我们服务器发数据 服务器也可以主动给客户端发数据。 2.为什么有了http协议 还要websocket 协议 http协议是一种无状态&#xff0c;非…

可视化开发

可视化开发 数据可视化 交互式可视化 文章目录 可视化开发前言一、可视化开发二、Python数据可视化大屏GIS图像智能识别处理软件开发三、可视化开发必备总结前言 可视化开发可以帮助开发者通过图形化界面和拖放操作来创建、编辑和测试应用程序。使用这些工具,开发者可以提高开…

【小黑嵌入式系统第十二课】μC/OS-III程序设计基础(二)——系统函数使用场合、时间管理、临界区管理、使用规则、互斥信号量

上一课&#xff1a; 【小黑嵌入式系统第十一课】μC/OS-III程序设计基础&#xff08;一&#xff09;——任务设计、任务管理&#xff08;创建&基本状态&内部任务&#xff09;、任务调度、系统函数 文章目录 一、系统函数使用场合1.1 时间管理1.1.1 控制任务的执行周期1…

代码随想录算法训练营Day7 | 344.反转字符串、541.反转字符串||、替换数字、151.反转字符串中的单词、右旋字符串

LeetCode 344 反转字符串 本题思路&#xff1a;反转字符串比较简单&#xff0c;定义两个指针&#xff0c;一个 i 0, 一个 j s.length-1。然后定义一个临时变量 tmp&#xff0c;进行交换 s[i] 和 s[j]。 class Solution {public void reverseString(char[] s) {int i 0;int …

在Excel中,如何简单快速地删除重复项,这里提供详细步骤

当你在Microsoft Excel中使用电子表格时&#xff0c;意外地复制了行&#xff0c;或者如果你正在制作其他几个电子表格的合成电子表格&#xff0c;你将遇到需要删除的重复行。这可能是一项非常无脑、重复、耗时的任务&#xff0c;但有几个技巧可以让它变得更简单。 删除重复项 …

【Linux】权限篇(二)

权限目录 1. 前言2. 权限2.1 修改权限2.2 有无权限的对比2.3 另外一个修改权限的方法2.3.1 更改用户角色2.3.2 修改文件权限属性 3. 第一个属性列4. 目录权限5. 默认权限 1. 前言 在之前的一篇博客中分享了关于权限的一些知识&#xff0c;这次紧接上次的进行&#xff0c;有需要…

《A++ 敏捷开发》-1 如何改善

1 如何改善 敏捷开发过程改进案例 5月 A公司一直专门为某电信公司提供针对客服、线上播放等业务。 张工是公司的中层管理者&#xff0c;管理好几个开发团队&#xff0c;有5位项目经理向他汇报。 他听说老同学的团队都开始用敏捷开发&#xff0c;很感兴趣&#xff0c;便参加了…

mysql SQL执行超时问题

show variables like max_execution_time 使用这个命令查看了&#xff0c;没有设置sql执行超时时间&#xff0c;那么大概率问题就出在阿里的Druid数据库连接池出了问题 尝试着socketTimeout由60000毫秒改成10000毫秒&#xff0c;果然执行了十几秒就超时报错了 socketTime…

【雷达原理】雷达测速原理及实现方法

一、雷达测速原理 1.1 多普勒频率 当目标和雷达之间存在相对运动时&#xff0c;若雷达发射信号的工作频率为&#xff0c;则接收信号的频率为&#xff0c;其中为多普勒频率。将这种由于目标相对于辐射源运动而导致回波信号的频率发生变化的现象称为多普勒效应。 如图1-1所示&a…

IDEA的facets和artifacts

在软件开发领域&#xff0c;IDEA 是指 JetBrains 公司的 IntelliJ IDEA&#xff0c;是一款流行的集成开发环境&#xff08;Integrated Development Environment&#xff09;。在 IntelliJ IDEA 中&#xff0c;"facets" 和 "artifacts" 是两个概念&#xff…