Linux——缓冲区

我在上篇博客留下了一个问题,那个问题就是关于缓冲区的问题,我们发现
文件有缓冲区,语言有用户级缓冲区,那么缓冲区到底是什么?,或者该怎
么认识缓冲区?这篇文章或许会让你有所认识,并且在此之前我还会介绍文
件的结构体对象中的成员。

文章目录

    • 标准错误
    • 文件结构体
  • 1. 缓冲区
    • a. 引入
    • b. 缓冲区存在的意义
    • c. 产生的问题
    • d. C语言提供的缓冲区
  • 2. 尝试实现一个用户缓冲区

但是在此之前,我要补充两个知识点,一个是为什么要有标准错误,而且标准错误也是指向屏幕。还有就是介绍内核数据结构文件结构体。

标准错误

很多人都知道一个进程会默认打开三个文件标准输入,标准输出,标准错误,其中标准输入指键盘,标准输出和标准错误都是指屏幕。我们对标准输入和标准输出很熟悉,基本上每个人都使用过,但是标准错误我们可能没有用过,那么它是什么?以及为什么要有它?
它是一个文件,其实正如它的名字而言,它是记录进程错误信息的文件,那么这个文件可以是屏幕,那自然也可以是一个文本文件。像我们使用过的perror就是输出到标准错误:
在这里插入图片描述
只是我们的默认标准错误指向屏幕而已,当我们把标准错误的指向修改后:
在这里插入图片描述
在这里插入图片描述
这后面的Sucess是C语言中错误码对应的错误信息,当我们修改错误码之后:
在这里插入图片描述
在这里插入图片描述
所以标准错误可以帮助我们在进行大型的工程的时候,通过改变标准错误指向的方式将错误信息写入到特定文本文件以等待后续的处理,而正常的信息则是正常写到自己的目标文件(屏幕)里,互不干扰。

文件结构体

我们说当一个文件被打开时操作系统会创建一个结构体来描述这个文件,那现在我们就来简单认识一下该结构体中的一些成员:
在这里插入图片描述
其中f_list是用来链接系统中被打开文件的。
f_count是有多少个进程打开了文件
f_flags是文件的打开方式
f_mode是文件的权限
f_fowner是说明文件是谁打开的
f_pos表示文件的读写位置
f_mapping跟文件缓冲区有关
f_op是关于对文件操作的操作集:
在这里插入图片描述

1. 缓冲区

我们接下来的缓冲区不做特殊说明说的都是用户级别的缓冲区

a. 引入

我们现在再回顾这个问题:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
我们看到,有没有fflush,会产生出不同的结果,但是为什么第一份代码中为什么aaaaaaaa没有输入到log.txt文件中呢?这就是我们今天要说的缓冲区。这是因为write是系统调用,它写入内容到一号文件时,是直接写入到文件缓冲区中,而printf是C标准库提供的函数,它会先将内容输入到C语言提供的缓冲区中,但是我们知道,C语言缓冲区中的内容不做处理的话是直到程序运行结束的时候才会刷新,而我们在程序结束之前就将log.txt文件关闭了,那缓冲区中的aaaaaaaaa就被释放了。我们也平常会说斜杠n刷新缓冲区,但是缓冲区到底是什么呢?其实缓冲区就是平台(C语言、操作系统)提供的一块内存而已。

b. 缓冲区存在的意义

那么缓冲区存在的意义是什么呢?我们直接将内容打印到屏幕上不可以吗?当然是可以的,屏幕也是文件,当我们使用系统调用的时候会越过C语言提供的缓冲区,直接写到屏幕上。
首先,我们要对文件进行写入,本质上其实是对硬件的写入,那么假如当我们高频的对硬件进行读写的时候,那势必会将我们程序的运行速度减慢,那么这时侯,缓冲区的作用就来了,我们可以先将对文件的读写操作先写入到这个缓冲区中,然后就不用管它了,而这个缓冲区只需要以一种特定的触发方式,当触发之后再将内容写入到文件中。这么做的话就会分担我们程序的压力,从而提高我们程序的效率。写入文件的动作是必须做的,但是看的就是调取硬件的频率。
并且缓冲区中的触发机制,是缓冲区中的数据积累到一定量的时候,就会触发,从而向文件中写入,不需要多次向文件中写入,那么这也帮我们降低了写入文件的成本,从而变相的提高了我们写入文件的效率
其中的触发机制,就是我们的缓冲区的刷新机制,而缓冲区的刷新机制一般有:
即时缓冲(立即刷新)、行缓冲(行刷新)、全缓冲(缓冲区满了再刷新)。
当然也会有特殊情况:
强制刷新(fflush)、进程退出的时候自动刷新
而对于硬件而言一般来说:
显示器采用的是行刷新,磁盘采用的是全刷新

c. 产生的问题

我们会有这样的一份代码:
在这里插入图片描述
在这里插入图片描述
我们看到,当程序正常运行的时候,结果是符合我们预期的,但是当它重定向到文件的时候,文件中的内容不符合我们的预期。观察它会发现,C标准库的函数打印的内容打印了两份,而系统调用只打印了一份且顺序有所变化。
那么接下来我就带大家分析其中的原因:
程序正常运行我们就不说了,我们只说重定向的问题。
当我们重定向程序打印的内容到文件的时候,其实有一个东西偷偷的改变了,那就是缓冲区的刷新机制,由屏幕缓冲区的刷新到硬盘的刷新机制,而这也是行缓冲到全缓冲的变化。全缓冲(缓冲区是很大的)意味着不强制刷新的情况下,这一点内容是只有进程结束的时候才会刷新缓冲区内容,要注意我们在程序结束之前可是创建了一个子进程父子进程是共享代码数据的,现在就要有一个认识:用户级缓冲区也是属于进程的一份数据,那么缓冲区中的数据父子共享。所以无论父子进程哪个进程先退出,都会将自己缓冲区的内容刷新到文件中,那缓冲的内容是共享的啊,其中一个刷走之后,另一个就没有了,不合理,所以这里会发生写时拷贝,使另一个没有退出的进程仍然享有缓冲区的数据,那这时候,该进程也退出了,也要刷新缓冲区了,这时候会再次向文件中写入数据,而这就是导致重定向的时候C标准库的函数打印了两次的原因,那为什么系统调用没有打印两次呢?那是因为系统调用是直接向文件中写入的,没有经过C语言的缓冲区,也就不是我们程序的数据它已经是操作系统的数据了,不触发写时拷贝,所以就打印一次。
还有是顺序问题,这个很简单:
对于直接运行程序,由于是输出到屏幕,每一个输出的内容又都有斜杠n,所以打印的内容都是即时刷新到文件中了。
对于重定向,由于是全缓冲,系统调用不管直接刷到文件里了,而C标准库的函数还在C语言提供的缓冲区里。所以才会导致顺序发生变化。
在这里插入图片描述
而上面的向文件中写入也只是先写入到文件缓冲区中,然后由操作系统来根据自己的刷新缓冲区的触发机制来刷新缓冲区。
还有一个动词我们要明确,什么是刷新
刷新就是将缓冲区的内容写入到目的地的过程,比如将C语言提供的缓冲区中的内容写到文件缓冲区中,又或者是操作系统将文件缓冲区中的内容写入到磁盘文件中。
而C语言提供的缓冲区这种我们一般就叫做用户缓冲区
上面说的文件缓冲区是属于操作系统的,属于内核缓冲区

d. C语言提供的缓冲区

那么如果上面说的C语言给我们提供了缓冲区的话,它在哪里呢?
我们观察C标准库的关于文件操作的接口就会发现:
在这里插入图片描述
这个缓冲区其实就在FILE结构体里:
在这里插入图片描述
在这里插入图片描述

可以看到,C标准库中的FILE确实是维护着一段空间。

2. 尝试实现一个用户缓冲区

经过上面的探究,我们也试着写出一个属于自己的简单的用户级别的缓冲区,用户级别的缓冲区肯定是封装着系统调用。
头文件

#pragma oncetypedef struct myFILE
{int _fileno; //存储fdchar _buffer[1024]; //用户缓冲区int _end;//缓冲区的最后一个元素的后一个元素的下标
}myFILE;extern myFILE* my_fopen(const char* path, const char* mode);
extern int my_fputs(const char* s, myFILE* stream);
extern int my_fflush(myFILE* stream);
extern int my_fclose(myFILE* fp);

原文件

#include "mylib.h"
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>  
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <stdlib.h>myFILE* my_fopen(const char* path, const char* mode)
{int flags = 0;if(strcmp(mode, "r") == 0){flags |= O_RDONLY;}else if(strcmp(mode, "w") == 0){flags |= (O_CREAT|O_WRONLY|O_TRUNC);}else if(strcmp(mode, "a") == 0){flags |= (O_CREAT|O_WRONLY|O_APPEND);}else{}int fd = 0;if(flags & O_RDONLY)fd = open(path, flags);else{fd = open(path, flags, 0666);}if(fd < 0){errno = 2;return NULL;}myFILE* fp = (myFILE*)malloc(sizeof(myFILE));if(fp == NULL){errno = 3;return NULL;}fp->_end = 0;fp->_fileno = fd;return fp;
}int my_fputs(const char* s, myFILE* stream)
{memcpy(stream->_buffer + stream->_end, s, strlen(s));stream->_end += strlen(s);if(stream->_buffer[stream->_end - 1] == '\n'){my_fflush(stream);}return strlen(s);
}int my_fflush(myFILE* stream)
{if(stream->_end > 0);write(stream->_fileno, stream->_buffer, stream->_end);stream->_end = 0;return 1;
}int my_fclose(myFILE* fp)
{my_fflush(fp);close(fp->_fileno);return fp->_fileno;
}
#include <unistd.h>
#include "mylib.h"int main()
{myFILE* fp = my_fopen("log.txt", "w");const char* str = "hello world\n";int i = 0;for(i = 0; i < 20; i++){ my_fputs(str, fp);sleep(1);}my_fclose(fp);return 0;
}

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/223273.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

nvm安装教程, 实现nodejs多版本切换

文章目录 前言下载安装步骤切换下载镜像管理node查看版本安装指定版本使用指定版本卸载指定版本 nvm基本命令参考 前言 刚在做项目需要用到nodejs 16以上, 而我的本地安装是nodejs15, 想办法升级一下nodejs的版本. 查阅资料后发现可以下载 nvm&#xff08;Node.js 版本管理工…

Mac电脑上soucetree账户更改

在开发公司项目的时候遇到一个问题。soucetree提示需要输入已离职员工-张三的密码。 问题&#xff1a;Mac电脑使用souetree&#xff0c;拉取仓库代码提示需要输入其他员工密码。 解决&#xff1a; Mac电脑 SourceTree去掉之前的账户 1、前往文件路径 /Library/Application Su…

【UML】第9篇 类图(概念、作用和抽象类)(1/3)

目录 一、类图的概念 二、类图的主要作用 三、类图的构成 3.1 类的名称 3.2 抽象类&#xff08;Abstract Class&#xff09; 一、类图的概念 类图是UML模型中静态视图。它用来描述系统中的有意义的概念&#xff0c;包括具体的概念、抽象的概念、实现方面的概念等。静态视…

Hbase的安装配置

注&#xff1a;本文默认已经完成hadoop的下载以及环境配置 1.上传zookeeper和hbase压缩包到指令路径并且解压 (理论上讲&#xff0c;hbase其实内置了zookeeper&#xff0c;我们也可以不另外下载&#xff0c;另外下载的目的在于减少组件间依赖性) cd /home mkir hbase cd /hom…

Android Studio各种Gradle常见报错问题及解决方案

大家好&#xff0c;我是咕噜铁蛋&#xff01;在开发Android应用程序时&#xff0c;我们可能会遇到各种Gradle错误。这些错误可能来自不同的原因&#xff0c;例如依赖项问题、配置错误、版本冲突等。今天我通过搜索整理了一下&#xff0c;在这篇文章中&#xff0c;我将分享一些常…

PromptNER: Prompt Locating and Typing for Named Entity Recognition

原文链接&#xff1a; https://aclanthology.org/2023.acl-long.698.pdf ACL 2023 介绍 问题 目前将prompt方法应用在ner中主要有两种方法&#xff1a;对枚举的span类型进行预测&#xff0c;或者通过构建特殊的prompt来对实体进行定位。但作者认为这些方法存在以下问题&#xf…

tcp 的限制 (TCP_WRAPPERS)

#江南的江 #每日鸡汤&#xff1a;青春是打开了就合不上的书&#xff0c;人生是踏上了就回不了头的路&#xff0c;爱情是扔出了就收不回的赌注。 #初心和目标&#xff1a;拿到高级网络工程师 TCP_WRAPPERs Tcp_wrappers 对于七层模型中是位于第四层的安全工具&#xff0c;他…

VideoPoet: Google的一种用于零样本视频生成的大型语言模型

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

力扣面试经典题之二叉树

104. 二叉树的最大深度 简单 给定一个二叉树 root &#xff0c;返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;3示例 2&#xff1a; 输入&#xf…

js中将数字转成中文

文章目录 一、实现二、最后 一、实现 如果要将数字10、100和1000转换成中文的"十"、“一百"和"一千”&#xff0c;可以使用以下 JavaScript 代码实现&#xff1a; function numberToChinese(num) {const chineseNums [零, 一, 二, 三, 四, 五, 六, 七, …

计算机的工作原理(上)

1. 计算机发展史 计算的需求在人类的历史中是广泛存在的&#xff0c;发展大体经历了从一般计算工具到机械计算机到目前的电子计算机的发展历程。&#xff08;以下是计算机的发展历程&#xff09; 1、公元前2500 年前&#xff0c;算盘已经出现了&#xff1b;除此之外&#xff0c…

【案例】图片预览

效果图 如何让图片放大&#xff0c;大多数的UI组件都带有这种功能&#xff0c;今天给大家介绍的这个插件除了放大之外&#xff0c;还可以旋转、移动、翻转、旋转、二次放大&#xff08;全屏&#xff09; 实现 npm i v-viewer -Smain.js 中引入 import viewerjs/dist/viewer.c…

C++哈希表的实现

C哈希表的实现 一.unordered系列容器的介绍二.哈希介绍1.哈希概念2.哈希函数的常见设计3.哈希冲突4.哈希函数的设计原则 三.解决哈希冲突1.闭散列(开放定址法)1.线性探测1.动图演示2.注意事项3.代码的注意事项4.代码实现 2.开散列(哈希桶,拉链法)1.概念2.动图演示3.增容问题1.拉…

Linux命令-查看内存、GC情况及jmap 用法

查看进程占用内存、CPU使用情况 1、查看进程 #jps 查看所有java进程 #top 查看cpu占用高进程 输入m &#xff1a;根据内存排序 topMem: 16333644k total, 9472968k used, 6860676k free, 165616k buffers Swap: 0k total, 0k used, 0k free, 6…

网络爬虫之Ajax动态数据采集

动态数据采集 规则 有时候我们在用 requests 抓取页面的时候&#xff0c;得到的结果可能和在浏览器中看到的不一样&#xff0c;在浏览器中可以看到正常显示的页面教据&#xff0c;但是使用 requests 得到的结果并没有&#xff0c;这是因为requests 获取的都是原始的 HTML 文档…

LeetCode刷题--- 目标和

个人主页&#xff1a;元清加油_【C】,【C语言】,【数据结构与算法】-CSDN博客 个人专栏 力扣递归算法题 http://t.csdnimg.cn/yUl2I 【C】 http://t.csdnimg.cn/6AbpV 数据结构与算法 http://t.csdnimg.cn/hKh2l 前言&#xff1a;这个专栏主要讲述递归递归、搜…

数值分析期末复习

第一章 科学计算 误差 解题步骤 先求绝对误差: ∣ x − x ∗ ∣ |x - x^*| ∣x−x∗∣求相对误差限: ∣ x − x ∗ ∣ x ∗ \frac{|x\,\,-\,\,x^*|}{x^*} x∗∣x−x∗∣​求有效数字 ∣ x − x ∗ ∣ 需要小于它自身的半个单位 |x-x^*|\text{需要小于它自身的半个单位} ∣…

亚信安慧AntDB:支撑中国广电5G业务的数据库之力

自2019年6月获得5G牌照以来&#xff0c;中国广电积极利用700MHz频谱资源&#xff0c;迅速崛起为第四大运营商&#xff0c;标志着其在数字通信领域取得的巨大成就。通过与中国移动紧密合作&#xff0c;共建共享基站已超过400万座&#xff0c;为实现自主运营和差异化竞争提供了坚…

直接插入排序【从0-1学数据结构】

文章目录 &#x1f497; 直接插入排序Java代码C代码JavaScript代码稳定性时间复杂度空间复杂度 我们先来学习 直接插入排序, 直接排序算是所有排序中最简单的了,代码也非常好实现,尽管直接插入排序很简单,但是我们依旧不可以上来就直接写代码,一定要分析之后才开始写,这样可以提…

微软官方出品:GPT大模型编排工具,支持C#、Python等多个语言版本

随着ChatGPT的火热&#xff0c;基于大模型开发应用已经成为新的风口。虽然目前的大型模型已经具备相当高的智能水平&#xff0c;但它们仍然无法完全实现业务流程的自动化&#xff0c;从而达到用户的目标。 微软官方开源的Semantic Kernel的AI编排工具&#xff0c;就可以很好的…