Python电能质量扰动信号分类(二)基于CNN模型的一维信号分类

目录

前言

1 电能质量数据集制作与加载

1.1 导入数据

1.2 制作数据集

2 CNN-2D分类模型和训练、评估

2.1 定义CNN-2d分类模型

2.2 定义模型参数

2.3 模型结构

2.4 模型训练

2.5 模型评估

3 CNN-1D分类模型和训练、评估

3.1 定义CNN-1d分类模型

3.2 定义模型参数

3.3 模型结构

3.4 模型训练

3.5 模型评估

4 模型对比


往期精彩内容:

电能质量扰动信号数据介绍与分类-Python实现-CSDN博客

Python电能质量扰动信号分类(一)基于LSTM模型的一维信号分类-CSDN博客

轴承故障诊断分类模型全家桶-最全教程-CSDN博客

前言

本文基于Python仿真的电能质量扰动信号,先经过数据预处理进行数据集的制作和加载,然后通过Pytorch实现CNN模型一维卷积和二维卷积对扰动信号的分类。Python仿真电能质量扰动信号的详细介绍可以参考下文(文末附10分类数据集):

电能质量扰动信号数据介绍与分类-Python实现-CSDN博客

部分扰动信号类型波形图如下所示:

1 电能质量数据集制作与加载

1.1 导入数据

在参考IEEE Std1159-2019电能质量检测标准与相关文献的基础上构建了扰动信号的模型,生成包括正常信号在内的10中单一信号和多种复合扰动信号。参考之前的文章,进行扰动信号10分类的预处理:

第一步,按照公式模型生成单一信号

单一扰动信号可视化:

第二步,导入十分类数据

import pandas as pd
import numpy as np# 样本时长0.2s  样本步长1024  每个信号生成500个样本  噪声0DB  
window_step = 1024
samples = 500
noise = 0
split_rate = [0.7, 0.2, 0.1]  # 训练集、验证集、测试集划分比例# 读取已处理的 CSV 文件
dataframe_10c = pd.read_csv('PDQ_10c_Clasiffy_data.csv' )
dataframe_10c.shape

1.2 制作数据集

第一步,定义制作数据集函数

第二步,制作数据集与分类标签

from joblib import dump, load
# 生成数据
train_dataframe, val_dataframe, test_dataframe = make_data(dataframe_10c, split_rate)
# 制作标签
train_xdata, train_ylabel = make_data_labels(train_dataframe)
val_xdata, val_ylabel = make_data_labels(val_dataframe)
test_xdata, test_ylabel = make_data_labels(test_dataframe)
# 保存数据
dump(train_xdata, 'TrainX_1024_0DB_10c')
dump(val_xdata, 'ValX_1024_0DB_10c')
dump(test_xdata, 'TestX_1024_0DB_10c')
dump(train_ylabel, 'TrainY_1024_0DB_10c')
dump(val_ylabel, 'ValY_1024_0DB_10c')
dump(test_ylabel, 'TestY_1024_0DB_10c')

2 CNN-2D分类模型和训练、评估

2.1 定义CNN-2d分类模型

2.2 定义模型参数

# 定义模型参数
batch_size = 32
# 先用浅层试一试
conv_arch = ((2, 32), (1, 64), (1, 128))  
input_channels = 1
num_classes = 10
model = CNN2DModel(conv_arch, num_classes, batch_size)  
# 定义损失函数和优化函数
model = model.to(device)
loss_function = nn.CrossEntropyLoss(reduction='sum')  # loss
learn_rate = 0.0003
optimizer = torch.optim.Adam(model.parameters(), learn_rate)  # 优化器

2.3 模型结构

2.4 模型训练

训练结果

50个epoch,准确率将近97%,CNN-2D网络分类模型效果良好。

2.5 模型评估

# 模型 测试集 验证  
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 有GPU先用GPU训练# 加载模型
model =torch.load('best_model_cnn2d.pt')
# model = torch.load('best_model_cnn2d.pt', map_location=torch.device('cpu'))# 将模型设置为评估模式
model.eval()
# 使用测试集数据进行推断
with torch.no_grad():correct_test = 0test_loss = 0for test_data, test_label in test_loader:test_data, test_label = test_data.to(device), test_label.to(device)test_output = model(test_data)probabilities = F.softmax(test_output, dim=1)predicted_labels = torch.argmax(probabilities, dim=1)correct_test += (predicted_labels == test_label).sum().item()loss = loss_function(test_output, test_label)test_loss += loss.item()test_accuracy = correct_test / len(test_loader.dataset)
test_loss = test_loss / len(test_loader.dataset)
print(f'Test Accuracy: {test_accuracy:4.4f}  Test Loss: {test_loss:10.8f}')Test Accuracy: 0.9313  Test Loss: 0.04866932

3 CNN-1D分类模型和训练、评估

3.1 定义CNN-1d分类模型

注意:与2d模型的信号长度堆叠不同,CNN-1D模型直接在一维序列上进行卷积池化操作;形状为(batch,H_in, seq_length),利用平均池化 使CNN-1D和CNN-2D模型最后输出维度相同,保持着相近的参数量。

3.2 定义模型参数

# 定义模型参数
batch_size = 32
# 先用浅层试一试
conv_arch = ((2, 32), (1, 64), (1, 128))  
input_channels = 1
num_classes = 10
model = CNN1DModel(conv_arch, num_classes, batch_size)  
# 定义损失函数和优化函数
model = model.to(device)
loss_function = nn.CrossEntropyLoss(reduction='sum')  # loss
learn_rate = 0.0003
optimizer = torch.optim.Adam(model.parameters(), learn_rate)  # 优化器

3.3 模型结构

3.4 模型训练

训练结果

100个epoch,准确率将近95%,CNN-1D网络分类模型效果良好。

3.5 模型评估

# 模型 测试集 验证  
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 有GPU先用GPU训练# 加载模型
model =torch.load('best_model_cnn1d.pt')
# model = torch.load('best_model_cnn2d.pt', map_location=torch.device('cpu'))# 将模型设置为评估模式
model.eval()
# 使用测试集数据进行推断
with torch.no_grad():correct_test = 0test_loss = 0for test_data, test_label in test_loader:test_data, test_label = test_data.to(device), test_label.to(device)test_output = model(test_data)probabilities = F.softmax(test_output, dim=1)predicted_labels = torch.argmax(probabilities, dim=1)correct_test += (predicted_labels == test_label).sum().item()loss = loss_function(test_output, test_label)test_loss += loss.item()test_accuracy = correct_test / len(test_loader.dataset)
test_loss = test_loss / len(test_loader.dataset)
print(f'Test Accuracy: {test_accuracy:4.4f}  Test Loss: {test_loss:10.8f}')Test Accuracy: 0.9185  Test Loss: 0.14493044

4 模型对比

对比CNN-2D模型 和CNN-1D模型:

模型参数量训练集准确率验证集准确率测试集准确率
CNN1D61565496.5694.6491.85
CNN2D68343098.3896.8893.13

由于CNN-2D模型参数量稍微多一点,所以模型表现得也略好一点,适当调整参数,两者模型准确率相近。但是CNN-2D推理速度要快于CNN-1D,在电能质量扰动信号数据集上,应该更考虑CNN-2D模型在堆叠后的一维信号上进行卷积池化。

注意调整参数:

  • 可以适当增加 CNN层数 和每层神经元个数,微调学习率;

  • 增加更多的 epoch (注意防止过拟合)

  • 可以改变一维信号堆叠的形状(设置合适的长度和维度)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/223350.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

部署LNMP动态网站

部署LNMP动态网站 安装LNMP平台相关软件1. 安装软件包2. 启动服务(nginx、mariadb、php-fpm)3. 修改Nginx配置文件,实现动静分离4. 配置数据库 上线wordpress代码 (测试搭建的LNMP环境是否可以使用)1. 上线php动态网站…

九、W5100S/W5500+RP2040之MicroPython开发<HTTPOneNET示例>

文章目录 1. 前言2. 平台操作流程2.1 创建设备2.2 创建数据流模板 3. WIZnet以太网芯片4. 示例讲解以及使用4.1 程序流程图4.2 测试准备4.3 连接方式4.4 相关代码4.5 烧录验证 5. 注意事项6. 相关链接 1. 前言 在这个智能硬件和物联网时代,MicroPython和树莓派PICO正…

AOSP源码下载方法,解决repo sync错误:android-13.0.0_r82

篇头 最近写文章,反复多次折腾AOSP代码,因通过网络repo sync aosp代码,能一次顺利下载的概率很低,以前就经常遇到,但从未总结,导致自己也要回头检索方法,所以觉得可以总结一下,涉及…

python实现图像的几何变换——冈萨雷斯数字图像处理

1、 实现图像的平移。 原理: 图像的平移是一种基本的图像处理操作,它将图像中的每个像素沿着指定的方向和距离移动,以创建一个新的平移后的图像。平移的原理很简单,通常涉及到以下几个步骤: 确定平移的距离和方向:首先…

数据库之MySQL的介绍

操作系统: windows:win10、win11、win7、windows Server2016 Linux/Unix :红帽(RedHat)、Bebian、SUSE MacOS Linux系统:CantOS(yum、dnf)、Ubuntu(apt、apt—get&am…

【设计模式-2.5】创建型——建造者模式

说明:本文介绍设计模式中,创建型设计模式中的最后一个,建造者模式; 入学报道 创建型模式,关注于对象的创建,建造者模式也不例外。假设现在有一个场景,高校开学,学生、教师、职工都…

阿里云吴结生:云计算是企业实现数智化的阶梯

云布道师 近年来,越来越多人意识到,我们正处在一个数据爆炸式增长的时代。IDC 预测 2027 年全球产生的数据量将达到 291 ZB,与 2022 年相比,增长了近 2 倍。其中 75% 的数据来自企业,每一个现代化的企业都是一家数据公…

【圣诞】极安云科赠书活动第①期:CTF实战:从入门到提升

【圣诞】极安云科赠书活动第①期:CTF实战:从入门到提升 9787111724834 9787121376955 9787302556275 ISBN编号:9787111724834 书名:CTF实战:从入门到提升 定:99.00元 开本:184mm260&#xff…

Leetcode—445.两数相加II【中等】

2023每日刷题(六十七) Leetcode—445.两数相加II 实现代码 /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/struct ListNode* addTwoNumbers(struct ListNode* l1, struct ListNode* l2…

matlab 最小二乘拟合平面(直接求解法)

目录 一、算法原理二、代码实现三、算法效果本文由CSDN点云侠原创,原文链接。爬虫网站自重。 一、算法原理 平面方程的一般表达式为: A x + B y +

基于多反应堆的高并发服务器【C/C++/Reactor】(中)Channel 模块的实现

在这篇文章中虽然实现了能够和多客户端建立连接,并且同时和多个客户端进行通信。 基于多反应堆的高并发服务器【C/C/Reactor】(上)-CSDN博客https://blog.csdn.net/weixin_41987016/article/details/135141316?spm1001.2014.3001.5501但是有…

3D小球跑酷

目录 一、前言 二、开发环境 三、场景搭建 1. 创建项目 2. 创建场景内物体 2.1 创建跑道 2.2 创建玩家 2.3 创建障碍物 2.4 改变跑道和障碍物的颜色 2.4.1 创建材质 2.4.2 给跑道和障碍物更换材质 四、功能脚本实现 1. 创建玩家脚本 2. 相机跟随 3. 胜负的判定 3…

服务器IBM x3650 m2 管理口访问故障处理

服务器的内存告警后,连接管理口查看信息,管理口状态灯显示正常,但是无法ping通和访问。 处理过程如下: 1、在centos 6.6中安装ipmitool,替换为阿里云的yum源,然后安装。 # wget -O /etc/yum.repos.d/Cen…

SpringMVC:执行原理详解、配置文件和注解开发实现 SpringMVC

文章目录 SpringMVC - 01一、概述二、SpringMVC 执行原理三、使用配置文件实现 SpringMVC四、使用注解开发实现 SpringMVC1. 步骤2. 实现 五、总结注意: SpringMVC - 01 一、概述 SpringMVC 官方文档:点此进入 有关 MVC 架构模式的内容见之前的笔记&a…

抖店定好品类赛道之后,怎么选品和快速出单?相关教程分享如下!

我是王路飞。 之前分享抖店流程相关内容时,我说过,类目选择大于一切,且要优于、重于选品。 至于定类目的标准,我之前也给你们说过,不要以自己个人喜好为标准去判断市场,也不要凭借自己以往认知和经验确定…

JBoss 5.x/6.x 反序列化 CVE-2017-12149 已亲自复现

JBoss 5.x/6.x 反序列化 CVE-2017-12149 已亲自复现 漏洞名称漏洞描述影响版本 漏洞复现环境搭建漏洞利用 修复建议总结 漏洞名称 漏洞描述 2017年8月30日,厂商Redhat发布了一个JBOSSAS 5.x 的反序列化远程代码执行漏洞通告。该漏洞位于JBoss的HttpInvoker组件中的…

设计模式-解释器模式

设计模式专栏 模式介绍模式特点应用场景解释器模式和模板模式有什么区别和联系代码示例Java实现解释器模式Python实现解释器模式 解释器模式在spring中的应用 模式介绍 解释器模式是一种行为型设计模式,它定义了一门语言的文法表示,并建立了一个解释器来…

如何快速实现地源热泵远程监控

地源热泵远程监控解决方案 一、项目背景 山东省潍坊市盛世花园小区地源热泵项目是一个先进的供暖与制冷系统,旨在为整个小区提供高效且节能的温控服务。该系统主要由地下管道网络、地源热泵单元以及室内分配系统组成。 针对现有的地源热泵系统的管理和监控问题&a…

计算机服务器中了halo勒索病毒如何解密,halo勒索病毒解密数据恢复

计算机技术的不断发展,为企业的生产运营提供了极大便利,但也为网络安全埋下隐患,网络上的勒索病毒种类也在不断增加,给企业的数据安全带来了严重威胁。近日,云天数据恢复中心接到许多企业的求助,企业的计算…

Deployment Controller详解(上)

上一篇在《Kubectl 部署无状态应用》中介绍了如何使用 Deployment 部署五个 hello world 实例时,我们并没有详细探讨 Deployment Controller 的各项功能。因此,本文将深入介绍 Deployment Controller 的作用以及它能够完成的任务。 本文来自官方文档梳理…