基于YOLO11深度学习的运动鞋品牌检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】48.【基于深度学习的车辆检测追踪与流量计数系统】
49.【基于深度学习的行人检测追踪与双向流量计数系统】50.【基于深度学习的反光衣检测与预警系统】
51.【基于深度学习的危险区域人员闯入检测与报警系统】52.【基于深度学习的高密度人脸智能检测与统计系统】
53.【基于深度学习的CT扫描图像肾结石智能检测系统】54.【基于深度学习的水果智能检测系统】
55.【基于深度学习的水果质量好坏智能检测系统】56.【基于深度学习的蔬菜目标检测与识别系统】
57.【基于深度学习的非机动车驾驶员头盔检测系统】58.【太基于深度学习的阳能电池板检测与分析系统】
59.【基于深度学习的工业螺栓螺母检测】60.【基于深度学习的金属焊缝缺陷检测系统】
61.【基于深度学习的链条缺陷检测与识别系统】62.【基于深度学习的交通信号灯检测识别】
63.【基于深度学习的草莓成熟度检测与识别系统】64.【基于深度学习的水下海生物检测识别系统】
65.【基于深度学习的道路交通事故检测识别系统】66.【基于深度学习的安检X光危险品检测与识别系统】
67.【基于深度学习的农作物类别检测与识别系统】68.【基于深度学习的危险驾驶行为检测识别系统】
69.【基于深度学习的维修工具检测识别系统】70.【基于深度学习的维修工具检测识别系统】
71.【基于深度学习的建筑墙面损伤检测系统】72.【基于深度学习的煤矿传送带异物检测系统】
73.【基于深度学习的老鼠智能检测系统】74.【基于深度学习的水面垃圾智能检测识别系统】
75.【基于深度学习的遥感视角船只智能检测系统】76.【基于深度学习的胃肠道息肉智能检测分割与诊断系统】
77.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统】78.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统】
79.【基于深度学习的果园苹果检测与计数系统】80.【基于深度学习的半导体芯片缺陷检测系统】
81.【基于深度学习的糖尿病视网膜病变检测与诊断系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

目录

  • 基本功能演示
  • 研究背景
  • 应用场景
  • 主要工作内容
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • 界面参数设置说明
    • 检测结果说明
    • 主要功能说明
    • (1)图片检测说明
    • (2)视频检测说明
    • (3)摄像头检测说明
    • (4)保存图片与视频检测说明
  • 二、YOLO11简介
  • 三、模型训练、评估与推理
    • 1. 数据集准备与训练
    • 2.模型训练
    • 3. 训练结果评估
    • 4. 使用模型进行推理
  • 四、可视化系统制作
    • Pyqt5详细介绍
    • 系统制作
  • 【获取方式】

基本功能演示

基于YOLO11深度学习的运动鞋品牌检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】

摘要:运动文化普及和体育用品市场扩大使运动鞋品牌和款式增多,快速准确识别品牌信息对消费者、零售商和品牌方至关重要。但传统的人工检查和条形码扫描效率低、易出错。本文基于YOLO11的深度学习框架,通过6060张实际场景中不同运动鞋品牌的相关图片,训练了可进行运动鞋品牌检测的模型,可以很好的检测并识别实际场景中不同运动鞋。最终基于训练好的模型制作了一款带UI界面的运动鞋品牌检测与识别系统,更便于进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 研究背景
  • 应用场景
  • 主要工作内容
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • 界面参数设置说明
    • 检测结果说明
    • 主要功能说明
    • (1)图片检测说明
    • (2)视频检测说明
    • (3)摄像头检测说明
    • (4)保存图片与视频检测说明
  • 二、YOLO11简介
  • 三、模型训练、评估与推理
    • 1. 数据集准备与训练
    • 2.模型训练
    • 3. 训练结果评估
    • 4. 使用模型进行推理
  • 四、可视化系统制作
    • Pyqt5详细介绍
    • 系统制作
  • 【获取方式】

点击跳转至文末《完整相关文件及源码》获取


研究背景

随着运动文化的普及和体育用品市场的不断扩大,市场上运动鞋的品牌和款式日益多样化。对于消费者、零售商以及品牌方来说,准确快速地识别运动鞋的品牌信息变得越来越重要。然而,传统的识别方法依赖于人工检查或条形码扫描等方式,这些方法在处理大量商品时效率低下且容易出错。基于YOLO深度学习框架开发的运动鞋品牌检测识别系统,能够实时自动识别图像中的运动鞋位置及其具体品牌名称,极大地提高了识别效率和准确性。该系统的应用不仅优化了库存管理和顾客服务流程,也为市场分析和品牌保护提供了新的工具。

应用场景

零售管理:帮助零售商实现自动化库存盘点,通过摄像头监控店内商品,快速获取货架上各类运动鞋的品牌信息,提高库存管理效率。
智能购物体验:为实体店铺提供智能导购服务,顾客可以通过手机应用程序拍摄感兴趣的运动鞋,系统即时显示品牌及相关信息,增强购物体验。
电子商务平台:在线销售平台上使用该系统对上传的商品图片进行自动标注,确保产品信息的准确性和一致性,提升用户体验。
市场研究与趋势分析:收集不同地区、时间段内各种品牌运动鞋的出现频率数据,为企业制定市场营销策略提供依据。

主要工作内容

本文的主要内容包括以下几个方面:

  1. 搜集与整理数据集:搜集整理实际场景中不同品牌运动鞋的相关数据图片,并进行相应的数据标注与处理,为模型训练提供训练数据集;
  2. 训练模型:基于整理的数据集,根据最前沿的YOLOv11目标检测技术训练目标检测模型,实现对需要检测的对象进行有效检测的功能;
  3. 模型性能评估:对训练出的模型在验证集上进行了充分的结果评估和对比分析,主要目的是为了揭示模型在关键指标(如Precision、Recall、mAP50和mAP50-95等指标)上的表现情况
  4. 可视化系统制作:基于训练出的目标检测模型,搭配Pyqt5制作的UI界面,用python开发了一款界面简洁的软件系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存。其目的是为检测系统提供一个用户友好的操作平台,使用户能够便捷、高效地进行检测任务。

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可用于实际场景中的运动鞋检测,并识别不同品牌,分6个检测类别:['阿迪达斯','斐乐','新百伦','耐克','彪马','安德玛'];
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时检测结果等信息;
4. 支持图片或者视频检测结果保存
5. 支持将图片的检测结果保存为csv文件;

界面参数设置说明

在这里插入图片描述
置信度阈值:也就是目标检测时的conf参数,只有检测出的目标框置信度大于该值,结果才会显示;
交并比阈值:也就是目标检测时的iou参数,对检测框重叠比例iou大于该阈值的目标框进行过滤【也就是说假如两检测框iou大于该值的话,会过滤掉其中一个,该值越小,重叠框会越少】;

检测结果说明

在这里插入图片描述

显示标签名称与置信度:表示是否在检测图片上标签名称与置信度,显示默认勾选,如果不勾选则不会在检测图片上显示标签名称与置信度;
总目标数:表示画面中检测出的目标数目;
目标选择:可选择单个目标进行位置信息、置信度查看。
目标位置:表示所选择目标的检测框,左上角与右下角的坐标位置。默认显示的是置信度最大的一个目标信息;

主要功能说明

功能视频演示见文章开头,以下是简要的操作描述。

(1)图片检测说明

点击打开图片按钮,选择需要检测的图片,或者点击打开文件夹按钮,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。
点击保存按钮,会对检测结果进行保存,存储路径为:save_data目录下,同时会将图片检测信息保存csv文件
注:1.右侧目标位置默认显示置信度最大一个目标位置,可用下拉框进行目标切换。所有检测结果均在左下方表格中显示。

(2)视频检测说明

点击视频按钮,打开选择需要检测的视频,就会自动显示检测结果,再次点击可以关闭视频。
点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。

(3)摄像头检测说明

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击,可关闭摄像头。

(4)保存图片与视频检测说明

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存,对于图片图片检测还会保存检测结果为csv文件,方便进行查看与后续使用。检测的图片与视频结果会存储在save_data目录下。
注:暂不支持视频文件的检测结果保存为csv文件格式。

保存的检测结果文件如下:
在这里插入图片描述

图片文件保存的csv文件内容如下,包括图片路径、目标在图片中的编号、目标类别、置信度、目标坐标位置
注:其中坐标位置是代表检测框的左上角与右下角两个点的x、y坐标。
在这里插入图片描述

二、YOLO11简介

YOLO11源码地址:https://github.com/ultralytics/ultralytics

Ultralytics YOLO11是一款前沿的、最先进的模型,它在之前YOLO版本成功的基础上进行了构建,并引入了新功能和改进,以进一步提升性能和灵活性。YOLO11设计快速、准确且易于使用,使其成为各种物体检测和跟踪、实例分割、图像分类以及姿态估计任务的绝佳选择。
在这里插入图片描述

YOLO11创新点如下:

YOLO 11主要改进包括:
增强的特征提取:YOLO 11采用了改进的骨干和颈部架构,增强了特征提取功能,以实现更精确的目标检测。
优化的效率和速度:优化的架构设计和优化的训练管道提供更快的处理速度,同时保持准确性和性能之间的平衡。
更高的精度,更少的参数:YOLO11m在COCO数据集上实现了更高的平均精度(mAP),参数比YOLOv8m少22%,使其在不影响精度的情况下提高了计算效率。
跨环境的适应性:YOLO 11可以部署在各种环境中,包括边缘设备、云平台和支持NVIDIA GPU的系统。
广泛的支持任务:YOLO 11支持各种计算机视觉任务,如对象检测、实例分割、图像分类、姿态估计和面向对象检测(OBB)。

三、模型训练、评估与推理

本文主要基于YOLO11n模型进行模型训练,训练完成后对模型在验证集上的表现进行全面的性能评估及对比分析。总体流程包括:数据集准备、模型训练、模型评估。

1. 数据集准备与训练

通过网络上搜集关于实际场景中不同品牌运动鞋的相关图片,并使用Labelimg标注工具对每张图片进行标注,分6个检测类别['阿迪达斯','斐乐','新百伦','耐克','彪马','安德玛']

数据增强:
通过随机旋转、缩放、裁剪、翻转等方式进行图片数据增强,以扩充数据集。

最终数据集一共包含6060张图片,其中训练集包含5304张图片验证集包含504张图片测试集包含252张图片
部分图像及标注如下图所示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

数据集各类别数目分布情况如下:
在这里插入图片描述

2.模型训练

准备好数据集后,将图片数据以如下格式放置在项目目录中。在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入Data目录下。
在这里插入图片描述

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv11在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: D:\2MyCVProgram\2DetectProgram\SneakerBrandDetetction_v11\datasets\Data/train/images
val: D:\2MyCVProgram\2DetectProgram\SneakerBrandDetetction_v11\datasets\Data/valid/images
test: D:\2MyCVProgram\2DetectProgram\SneakerBrandDetetction_v11\datasets\Data/test/imagesnc: 6
names: ['adidas', 'fila', 'new_balance', 'nike', 'puma', 'under_armour']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,optimizer设定的优化器为SGD,训练代码如下:

#coding:utf-8
from ultralytics import YOLO
import matplotlib
matplotlib.use('TkAgg')# 模型配置文件
model_yaml_path = "ultralytics/cfg/models/11/yolo11.yaml"
#数据集配置文件
data_yaml_path = 'datasets/Data/data.yaml'
#预训练模型
pre_model_name = 'yolo11n.pt'if __name__ == '__main__':#加载预训练模型model = YOLO(model_yaml_path).load(pre_model_name)#训练模型results = model.train(data=data_yaml_path,epochs=150,      # 训练轮数batch=4,         # batch大小name='train_v11', # 保存结果的文件夹名称optimizer='SGD') # 优化器

模型常用训练超参数参数说明:
YOLO11 模型的训练设置包括训练过程中使用的各种超参数和配置。这些设置会影响模型的性能、速度和准确性。关键的训练设置包括批量大小、学习率、动量和权重衰减。此外,优化器、损失函数和训练数据集组成的选择也会影响训练过程。对这些设置进行仔细的调整和实验对于优化性能至关重要。
以下是一些常用的模型训练参数和说明:

参数名默认值说明
modelNone指定用于训练的模型文件。接受指向 .pt 预训练模型或 .yaml 配置文件。对于定义模型结构或初始化权重至关重要。
dataNone数据集配置文件的路径(例如 coco8.yaml).该文件包含特定于数据集的参数,包括训练数据和验证数据的路径、类名和类数。
epochs100训练总轮数。每个epoch代表对整个数据集进行一次完整的训练。调整该值会影响训练时间和模型性能。
patience100在验证指标没有改善的情况下,提前停止训练所需的epoch数。当性能趋于平稳时停止训练,有助于防止过度拟合。
batch16批量大小,有三种模式:设置为整数(例如,’ Batch =16 ‘), 60% GPU内存利用率的自动模式(’ Batch =-1 ‘),或指定利用率分数的自动模式(’ Batch =0.70 ')。
imgsz640用于训练的目标图像尺寸。所有图像在输入模型前都会被调整到这一尺寸。影响模型精度和计算复杂度。
deviceNone指定用于训练的计算设备:单个 GPU (device=0)、多个 GPU (device=0,1)、CPU (device=cpu),或苹果芯片的 MPS (device=mps).
workers8加载数据的工作线程数(每 RANK 多 GPU 训练)。影响数据预处理和输入模型的速度,尤其适用于多 GPU 设置。
nameNone训练运行的名称。用于在项目文件夹内创建一个子目录,用于存储训练日志和输出结果。
pretrainedTrue决定是否从预处理模型开始训练。可以是布尔值,也可以是加载权重的特定模型的字符串路径。提高训练效率和模型性能。
optimizer'auto'为训练模型选择优化器。选项包括 SGD, Adam, AdamW, NAdam, RAdam, RMSProp 等,或 auto 用于根据模型配置进行自动选择。影响收敛速度和稳定性
lr00.01初始学习率(即 SGD=1E-2, Adam=1E-3) .调整这个值对优化过程至关重要,会影响模型权重的更新速度。
lrf0.01最终学习率占初始学习率的百分比 = (lr0 * lrf),与调度程序结合使用,随着时间的推移调整学习率。

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv11在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型目标检测的mAP@0.5值为0.636,结果还是可以的。
在这里插入图片描述

4. 使用模型进行推理

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/train/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/5-151-_jpg.rf.3c8bc33847c19c4186bda2ea93e58016.jpg"# 加载预训练模型
model = YOLO(path, task='detect')# 检测图片
results = model(img_path)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR)
cv2.imshow("Detection Result", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:

在这里插入图片描述

更多检测结果示例如下:
在这里插入图片描述
在这里插入图片描述

四、可视化系统制作

基于上述训练出的目标检测模型,为了给此检测系统提供一个用户友好的操作平台,使用户能够便捷、高效地进行检测任务。博主基于Pyqt5开发了一个可视化的系统界面,通过图形用户界面(GUI),用户可以轻松地在图片、视频和摄像头实时检测之间切换,无需掌握复杂的编程技能即可操作系统。【系统详细展示见第一部分内容】

Pyqt5详细介绍

关于Pyqt5的详细介绍可以参考之前的博客文章:《Python中的Pyqt5详细介绍:基本机构、部件、布局管理、信号与槽、跨平台》,地址:

https://a-xu-ai.blog.csdn.net/article/details/143273797

系统制作

博主基于Pyqt5框架开发了此款运动鞋品牌检测与识别系统即文中第一部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

通过图形用户界面(GUI),用户可以轻松地在图片、视频和摄像头实时检测之间切换,无需掌握复杂的编程技能即可操作系统。这不仅提升了系统的可用性和用户体验,还使得检测过程更加直观透明,便于结果的实时观察和分析。此外,GUI还可以集成其他功能,如检测结果的保存与导出、检测参数的调整,从而为用户提供一个全面、综合的检测工作环境,促进智能检测技术的广泛应用。
在这里插入图片描述
关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、训练好的模型、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注末尾名片GZH【阿旭算法与机器学习】,发送【源码】获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练好的结果文件、训练代码、UI源码、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。


好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/22342.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DAY08 List接口、Collections接口、Set接口

学习目标 能够说出List集合特点1.有序2.允许存储重复的元素3.有带索引的方法(练习 add,remove,set,get) 能够使用集合工具类Collections类:static void sort(List<T> list) 根据元素的自然顺序 对指定列表按升序进行排序。static <T> void sort(List<T> lis…

shell编程总结

前言 shell编程学习总结&#xff0c;1万3千多字带你学习shell编程 往期推荐 14wpoc&#xff0c;nuclei全家桶&#xff1a;nuclei模版管理工具Nuclei 哥斯拉二开&#xff0c;免杀绕过规避流量检测设备 fscan全家桶&#xff1a;FscanPlus&#xff0c;fs&#xff0c;fscan适用…

OpenAI ChatGPT在心理治疗领域展现超凡同理心,通过图灵测试挑战人类专家

近期&#xff0c;一项关于OpenAI ChatGPT在心理治疗领域的研究更是引起了广泛关注。据报道&#xff0c;ChatGPT已经成功通过了治疗师领域的图灵测试&#xff0c;其表现甚至在某些方面超越了人类治疗师&#xff0c;尤其是在展现同理心方面&#xff0c;这一发现无疑为AI在心理健康…

【智能客服】ChatGPT大模型话术优化落地方案

本文原创作者:姚瑞南 AI-agent 大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权) 目录 一、项目背景 1.1 行业背景 1.2 业务现…

【JavaWeb12】数据交换与异步请求:JSON与Ajax的绝妙搭配是否塑造了Web的交互革命?

文章目录 &#x1f30d;一. 数据交换--JSON❄️1. JSON介绍❄️2. JSON 快速入门❄️3. JSON 对象和字符串对象转换❄️4. JSON 在 java 中使用❄️5. 代码演示 &#x1f30d;二. 异步请求--Ajax❄️1. 基本介绍❄️2. JavaScript 原生 Ajax 请求❄️3. JQuery 的 Ajax 请求 &a…

[Android]APP自启动

APP添加自启动权限&#xff0c;重启设备后自动打开APP。 1.AndroidManifest.xml <?xml version"1.0" encoding"utf-8"?> <manifest xmlns:android"http://schemas.android.com/apk/res/android"xmlns:tools"http://schemas.an…

Moonshot AI 新突破:MoBA 为大语言模型长文本处理提效论文速读

前言 在自然语言处理领域&#xff0c;随着大语言模型&#xff08;LLMs&#xff09;不断拓展其阅读、理解和生成文本的能力&#xff0c;如何高效处理长文本成为一项关键挑战。近日&#xff0c;Moonshot AI Research 联合清华大学、浙江大学的研究人员提出了一种创新方法 —— 混…

cs224w课程学习笔记-第2课

cs224w课程学习笔记-第2课 传统图学习 前言一、节点任务1、任务背景2、特征节点度3、特征节点中心性3.1 特征向量中心性&#xff08;Eigenvector Centrality&#xff09;3.2 中介中心性&#xff08;Betweenness Centrality&#xff09;3.3 接近中心性&#xff08;Closeness Cen…

Centos虚拟机扩展磁盘空间

Centos虚拟机扩展磁盘空间 扩展前后效果1 虚拟机vmware关机后&#xff0c;编辑2 扩展2.1 查看2.2 新建分区2.3 格式化新建分区ext42.3.1 格式化2.3.2 创建2.3.3 修改2.3.4 查看 2.4 扩容2.4.1 扩容2.4.1 查看 扩展前后效果 df -h1 虚拟机vmware关机后&#xff0c;编辑 2 扩展 …

1.13作业

1 if(!preg_match("/[0-9]|\~|\|\|\#|\\$|\%|\^|\&|\*|\&#xff08;|\&#xff09;|\-|\|\|\{|\[|\]|\}|\:|\|\"|\,|\<|\.|\>|\/|\?|\\\\/i", $c)){eval($c); 构造数组rce ?ceval(array_pop(next(get_defined_vars()))); post传参:asystem("c…

如何在 SpringBoot 项目使用 Redis 的 Pipeline 功能

本文是博主在批量存储聊天中用户状态和登陆信息到 Redis 缓存中时&#xff0c;使用到了 Pipeline 功能&#xff0c;并对此做出了整理。 一、Redis Pipeline 是什么 Redis 的 Pipeline 功能可以显著提升 Redis 操作的性能&#xff0c;性能提升的原因在于可以批量执行命令。当我…

力扣LeetCode: 2209 用地毯覆盖后的最少白色砖块

题目&#xff1a; 给你一个下标从 0 开始的 二进制 字符串 floor &#xff0c;它表示地板上砖块的颜色。 floor[i] 0 表示地板上第 i 块砖块的颜色是 黑色 。floor[i] 1 表示地板上第 i 块砖块的颜色是 白色 。 同时给你 numCarpets 和 carpetLen 。你有 numCarpets 条 黑…

RabbitMQ 消息队列

1. 消息队列是什么&#xff1f; 当用户注册成功后&#xff0c;就发送邮件。当邮件发送成功了&#xff0c;接口才会提示注册成功信息。但由于发送邮件&#xff0c;依赖于其他厂商的服务&#xff0c;有可能他们的接口会非常耗时。那么用户就一直要等着邮件发送成功了&#xff0c;…

【SQL实验】触发器

下载素材文件”tsgl”、“成绩管理”,将tsgl.bak和成绩管理.bak数据库还原到库中【导入操作在之前的文章中详细讲过】 触发器 1、为图书表设置更新触发器&#xff0c;根据总编号来更新书名、作者、出版社、分类号和单价(根据总编号找到相应记录&#xff0c;然后更新书名、作者…

Win10系统Docker+DeepSeek+ragflow搭建本地知识库

文章目录 1、安装ollama1.1 下载1.2 安装1.3 cmd命令行测试安装成功1.4 拉取模型2、安装ragflow2.1 下载项目2.2 通过docker拉取镜像安装2.3 查看docker日志是否安装成功3、模型配置3.1 第一次登录需要注册3.2 模型添加4、知识库配置4.1 创建知识库4.2 上传文档4.3 解析5、聊天…

redis的应用,缓存,分布式锁

1.应用 1.1可以用作缓存 作用&#xff1a;提交数据的查询效率&#xff0c;减少对数据库的访问频率 什么数据适合放入缓存 1.查询频率高&#xff0c;修改频率低 2.对安全系数比较低 如何实现 Service public class DeptServer {Autowiredprivate DeptMapper deptMapper;Auto…

springboot整合 xxl-job

文章目录 一、xxl-job是什么二、使用步骤 1. 下载并运行管理端代码2. 访问管理页面&#xff0c;确认是否启动成功3. 配置执行器【在自己的springboot项目中配置】4. 在页面上创建执行器和任务&#xff0c;与项目中绑定 总结参考 一、xxl-job是什么 XXL-JOB 是一个分布式任务调…

Jenkins 环境搭建---基于 Docker

前期准备 提前安装jdk、maven、nodeJs&#xff08;如果需要的话&#xff09; 创建 jenkins 环境目录&#xff0c;用来当做挂载卷 /data/jenkins/ 一&#xff1a;拉取 Jenkins 镜像 docker pull jenkins/jenkins:lts 二&#xff1a;设置 Jenkins挂载目录 mkdir -p ~/jen…

小米路由器 AX3000T 降级后无法正常使用,解决办法

问题描述 买了个 AX3000T 路由器&#xff0c;想安装 OpenWRT 或者 安装 Clash 使用&#xff0c;看教程说是需要降级到 v1.0.47 版本。 结果刷机之后路由器无法打开了&#xff0c;一直黄灯亮&#xff0c;中间灭一下&#xff0c;又是黄灯长亮&#xff0c;没有 WIFI 没有连接。以…

金融学-金融机构

前言 金融机构在金融体系运行体系运营中起着不可获缺的关键作用.如规则的制定与监管-中央银行,体系的运营证券公司,体系的供贷的参与者金融中介.本章将用一种说明我们的金融体系是怎样改进经济效率的经济分析,来讲述相关金融机构 金融结构的经济学分析 世界各国的金融体系在…