LangChain 30 ChatGPT LLM将字符串作为输入并返回字符串Chat Model将消息列表作为输入并返回消息

LangChain系列文章

  1. LangChain 实现给动物取名字,
  2. LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字
  3. LangChain 3使用Agent访问Wikipedia和llm-math计算狗的平均年龄
  4. LangChain 4用向量数据库Faiss存储,读取YouTube的视频文本搜索Indexes for information retrieve
  5. LangChain 5易速鲜花内部问答系统
  6. LangChain 6根据图片生成推广文案HuggingFace中的image-caption模型
  7. LangChain 7 文本模型TextLangChain和聊天模型ChatLangChain
  8. LangChain 8 模型Model I/O:输入提示、调用模型、解析输出
  9. LangChain 9 模型Model I/O 聊天提示词ChatPromptTemplate, 少量样本提示词FewShotPrompt
  10. LangChain 10思维链Chain of Thought一步一步的思考 think step by step
  11. LangChain 11实现思维树Implementing the Tree of Thoughts in LangChain’s Chain
  12. LangChain 12调用模型HuggingFace中的Llama2和Google Flan t5
  13. LangChain 13输出解析Output Parsers 自动修复解析器
  14. LangChain 14 SequencialChain链接不同的组件
  15. LangChain 15根据问题自动路由Router Chain确定用户的意图
  16. LangChain 16 通过Memory记住历史对话的内容
  17. LangChain 17 LangSmith调试、测试、评估和监视基于任何LLM框架构建的链和智能代理
  18. LangChain 18 LangSmith监控评估Agent并创建对应的数据库
  19. LangChain 19 Agents Reason+Action自定义agent处理OpenAI的计算缺陷
  20. LangChain 20 Agents调用google搜索API搜索市场价格 Reason Action:在语言模型中协同推理和行动
  21. LangChain 21 Agents自问自答与搜索 Self-ask with search
  22. LangChain 22 LangServe用于一键部署LangChain应用程序
  23. LangChain 23 Agents中的Tools用于增强和扩展智能代理agent的功能
  24. LangChain 24 对本地文档的搜索RAG检索增强生成Retrieval-augmented generation
  25. LangChain 25: SQL Agent通过自然语言查询数据库sqlite
  26. LangChain 26: 回调函数callbacks打印prompt verbose调用
  27. LangChain 27 AI Agents角色扮演多轮对话解决问题CAMEL
  28. LangChain 28 BabyAGI编写旧金山的天气预报
  29. LangChain 29 调试Debugging 详细信息verbose
    在这里插入图片描述

1. 动手用LangChain

LangChain提供许多模块,可用于构建语言模型应用程序。模块可以作为简单应用程序中的独立模块使用,并且它们可以组合用于更复杂的用例。组合由LangChain表达语言LangChain Expression Language(LCEL)提供支持,它定义了许多模块实现的统一可运行接口,从而使得能够无缝地链接组件成为可能。

最简单和最常见的链包含三个要素:

  • LLM/Chat Model:语言模型在这里是核心推理引擎。为了使用LangChain,您需要了解不同类型的语言模型以及如何与它们一起工作。
  • Prompt Template提示模板:这提供了对语言模型的指令。这控制着语言模型的输出,因此理解如何构建提示和不同的提示策略至关重要。
  • Output Parser输出解析器:这些将语言模型的原始响应转换为更易处理的格式,使得可以轻松地在下游使用输出。

在本指南中,我们将分别介绍这三个组件,然后讨论如何将它们组合在一起。了解这些概念将为您使用和定制LangChain应用程序奠定良好基础。大多数LangChain应用程序允许您配置模型和/或提示,因此知道如何利用这一点将是一个重要的促进因素。

2. LLM / Chat Model

有两种类型的语言模型:

  • LLM:基础模型将字符串作为输入并返回字符串
  • ChatModel:基础模型将消息列表作为输入并返回消息

字符串很简单,但是消息究竟是什么?基本消息接口由BaseMessage定义,其中有两个必需属性:

  • content:消息的内容。通常是字符串。
  • role:来自BaseMessage的实体。

LangChain提供了几个对象,以便轻松区分不同的角色:

  • HumanMessage:来自人类/用户的BaseMessage。
  • AIMessage:来自AI /助手的BaseMessage。
  • SystemMessage:来自系统的BaseMessage。
  • FunctionMessage / ToolMessage:包含函数或工具调用输出的BaseMessage。

如果没有这些角色中的任何一个听起来合适,还有一个ChatMessage类,您可以在其中手动指定角色。

LangChain提供了一个通用接口,被LLM和ChatModel共享。然而,要最有效地构建给定语言模型的提示,了解它们之间的区别是很有用的。

调用LLM或ChatModel的最简单方法是使用.invoke(),这是LangChain表达语言(LCEL)对象的通用同步调用方法:

  • LLM.invoke:接受一个字符串,返回一个字符串。
  • ChatModel.invoke:接受一个BaseMessage列表,返回一个BaseMessage。

这些方法的输入类型实际上比这更一般化,但为了简单起见,我们可以假设LLMs只接受字符串,而Chat模型只接受消息列表。请查看下面的“深入了解”部分,了解有关模型调用的更多信息。

让我们看看如何处理这些不同类型的模型和这些不同类型的输入。首先,让我们导入一个LLM和一个ChatModel。

from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI#llm = OpenAI()
#chat_model = ChatOpenAI()llm = OpenAI(model_name="gpt-3.5-turbo", temperature=0)
chat_model = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)

LLM和ChatModel对象实际上是配置对象。您可以使用温度等参数对它们进行初始化,并将它们传递给其他地方。

from langchain.schema import HumanMessagetext = "制造彩色袜子的公司取什么好名字呢?"
messages = [HumanMessage(content=text)]response = llm.invoke(text)
print("string >>", response)
# >> Feetful of Funresponse =  chat_model.invoke(messages)
print("message >>", response)
# >> AIMessage(content="Socks O'Color")

输出

[zgpeace@zgpeaces-MacBook-Pro langchain-llm-app (develop ✗)]$ python Basic/chat_msg.py    
string >> 1. 彩虹袜子公司
2. 绚丽袜子制造厂
3. 艳丽袜业有限公司
4. 缤纷袜子制造商
5. 魅力袜业集团
6. 彩绘袜子制造厂
7. 七彩袜子有限公司
8. 色彩世界袜业
9. 炫彩袜子制造商
10. 色彩缤纷袜业公司message >> content='1. 彩虹袜子公司\n2. 绚丽袜子制造厂\n3. 艳丽袜业有限公司\n4. 缤纷袜子制造商\n5. 魅力袜业集团\n6. 彩绘袜子制造厂\n7. 时尚彩袜有限公司\n8. 色彩世界袜业\n9. 炫彩袜子制造商\n10. 梦幻袜子公司'

LLM.invokeChatModel.invoke实际上都支持Union[str, List[BaseMessage], PromptValue]作为输入。PromptValue是一个定义了自己的返回输入的自定义逻辑的对象,可以将其输入作为字符串或消息。LLMs有逻辑将这些中的任何一个强制转换为字符串,而ChatModels有逻辑将这些中的任何一个强制转换为消息。LLM和ChatModel接受相同的输入意味着你可以在大多数链中直接交换它们,而不会破坏任何东西,尽管重要的是要考虑输入是如何被强制转换以及这可能会影响模型性能。要深入了解模型,请前往语言模型部分。

代码

https://github.com/zgpeace/pets-name-langchain/tree/develop

参考

https://python.langchain.com/docs/get_started/quickstart

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/223771.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

装前必看施工干货,贴瓷砖的5大步骤。福州中宅装饰,福州装修

亲爱的朋友们,你们是否曾经在装修房屋时遇到过贴砖的难题呢?贴砖可是装修工程中一项重要的工艺,它直接影响到整个装修的效果和质量。今天,我就来跟大家分享一下贴砖的几个重要要点,希望对你们有所帮助。 1️⃣ 选材是关…

2023 年人工智能研究与技术排名前 10 的国家

人工智能研究是一项全球性的工作。虽然美国和中国因其对人工智能的贡献而备受关注,但事实是,世界各国都在涉足这项技术,尝试新的突破,并吸引投资者的关注。 斯坦福大学的《2023年人工智能报告》估计,到 2022 年&#…

使用宝塔面板部署前端项目到服务器

目录 文章目录 前言 一、第一步:创建文件夹 二、第二步:部署前端项目 三、第三步:打开防火墙 文章目录 前言第一步:创建文件夹第二步:部署前端项目第三步:打开防火墙总结 前言 在此之前,我…

Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化

Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化 基础地图使用基础地图演示基础地图演示 - 视觉映射器 疫情地图-国内疫情地图案例效果数据整理 疫情地图-省级疫情地图省疫情地图 基础地图使用 基础地图演示 代码示例: &quo…

【Spring实战】02 配置多数据源

文章目录 1. 配置数据源信息2. 创建第一个数据源3. 创建第二个数据源4. 创建启动类及查询方法5. 启动服务6. 创建表及做数据7. 查询验证8. 详细代码总结 通过上一节的介绍,我们已经知道了如何使用 Spring 进行数据源的配置以及应用。在一些复杂的应用中,…

【SpringMVC】REST(Representation State Transfer)ful开发

REST全称Representation State Transfer,表现形式状态转换 文章目录 1. 为什么提出了REST?2. RESTful入门案例案例代码修改请求方式修改成RESTful风格,并以POST方式提交 RESTful格式下传参RESTful入门案例总结RequestBody,Reques…

Redis-运维

转自 极客时间 Redis 亚风 原文视频:https://u.geekbang.org/lesson/535?article681062 Redis 同步 Redis主从数据同步,主从第⼀次同步是全量同步 replicaof 主机 端口 #当前这个机器做Master的备份master如何判断slave是不是第⼀次来同步数据: Repl…

第11章 GUI Page400~402 步骤二 画直线

运行效果: 源代码: /**************************************************************** Name: wxMyPainterApp.h* Purpose: Defines Application Class* Author: yanzhenxi (3065598272qq.com)* Created: 2023-12-21* Copyright: yanzhen…

谷歌推大语言模型VideoPoet:文本图片皆可生成视频和音频

Google Research最近发布了一款名为VideoPoet的大型语言模型(LLM),旨在解决当前视频生成领域的挑战。该领域近年来涌现出许多视频生成模型,但在生成连贯的大运动时仍存在瓶颈。现有领先模型要么生成较小的运动,要么在生…

蓝桥杯 1223 第 2 场 小白入门赛

蓝桥小课堂-平方和 模拟 1 2 2 2 3 2 ⋯ n 2 n ⋅ ( n 1 ) ⋅ ( 2 n 1 ) 6 1^22^23^2\cdotsn^2\dfrac{n\;\cdot\;(n 1)\;\cdot\;(2n1)}{6} 122232⋯n26n⋅(n1)⋅(2n1)​。 write(n * (n 1) * (n * 2 1) / 6);房顶漏水啦 m a x ( 最大的行 − 最小的行 , 最大的列 −…

九:爬虫-MongoDB基础

MongoDB介绍 MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,因此可以存储比较复杂的数据类型。Mongo最大的特点是它支持的查询语言非常强大,其…

Tomcat与Netty比较

Tomcat介绍Tomcat支持的协议Tomcat的优缺点Netty介绍Netty支持的协议Netty的优点和缺点Tomcat和Netty的区别Tomcat和Netty的应用场Tomcat和Netty来处理大规模并发连接的优化Tomcat与Netty的网络模型的区别Tomcat与Netty架构设计拓展 Tomcat介绍 Tomcat是一个免费的、开放源代码…

JavaOOP篇----第十五篇

系列文章目录 文章目录 系列文章目录前言一、有没有可能两个不相等的对象有相同的hashcode二、拷贝和浅拷贝的区别是什么?三、static都有哪些用法?前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通…

RabbmitMQ基础

RabbmitMQ基础 1.1 什么是MQ MQ(Message Queue),从字面意思看,本质是个队列,FIFO先入先出,队列中存放的是message。是一种跨进程的通信机制,用于上下游传递消息。在互联网架构中,MQ是一种非常常见的上下游…

10 NAT网络地址转换

广域网技术 上面聊的内容都是内网的一些配置,但内网终将要访问外网的,我们需要怎么处理呢?一般使用HDLC(高级数据链路控制协议)或者PPP(点对点协议)。 使用PPP安全接入Internet PPP&#xff0…

PHP函数定义和分类

函数的含义和定义格式 在PHP中,允许程序员将常用的流程或者变量等组件组织成一个固定的格式实现特定功能,也就是说函数是具有特定功能特定格式的代码段。 函数的定义格式如下: function 函数名(参数1,参数2,参数n) {…

基于SSM的双减后初小教育课外学习生活活动平台的设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:Vue 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目:是 目录…

ESP8266网络相框采用TFT_eSPI库TJpg_Decoder库mixly库UDP库实现图片传送

用ESP8266和TFT_ESPI模块来显示图片数据。具体来说,我们将使用ILI9431显示器作为显示设备,并通过UDP协议将图片数据从发送端传输到ESP8266。最后,我们将解析这些数据并在TFT屏幕上显示出来。在这个过程中,我们将面临一些编程挑战&…

STM32 支持IAP的bootloader开发,使用串口通过Ymodem协议传输固件

资料下载: https://download.csdn.net/download/vvoennvv/88658447 一、概述 关于IAP的原理和Ymodem协议,本文不做任何论述,本文只论述bootloader如何使用串口通过Ymodem协议接收升级程序并进行IAP升级,以及bootloader和主程序两个工程的配置…

最常见的SQL报错注入函数(floor、updatexml、extractvalue)及payload总结

SQL报错注入是一种常见的SQL注入攻击方式,攻击者通过注入恶意代码,触发数据库的错误响应,并从错误信息中获取有用的信息。 下面介绍最常见的三个报错注入函数用法及payload总结: 1、floor() 使用floor报错注入,需要…