图论 | 网络流的基本概念

文章目录

    • 流网路
    • 残留网络
    • 增广路径
    • 最大流最小割定理
    • 最大流
      • Edmonds-Karp 算法
        • 算法步骤
        • 程序代码
        • 时间复杂度

流网路

流网络: G = ( V , E ) G = (V, E) G=(V,E)

在这里插入图片描述

  • 有向图,不考虑反向边
  • s:源点
  • t:汇点
  • c ( u , v ) c(u, v) c(u,v):边的最大容量
  • 可行流 f f f
    • 容量限制: 0 ≤ f ( u , v ) ≤ c ( u , v ) 0 \leq f(u, v) \leq c(u, v) 0f(u,v)c(u,v)
    • 流量守恒:除了源点和汇点,所有点满足 流入 = 流出 流入 = 流出 流入=流出
  • ∣ f ∣ |f| f:可行流的流量,即从源点流向汇点的速率。一种通用的解释是 从源点流出的流量 − 流入源点的流量 从源点流出的流量 - 流入源点的流量 从源点流出的流量流入源点的流量
  • 最大流:最大可行流

残留网络

残留网络定义:一个可行流流网络 f f f 对应一个残留网络 G f G_f Gf

  • 点集:与原图的点集一样 V f = V V_f = V Vf=V
  • 边集:不仅包含原图的边,同时包含所有边的方向边,即 E f = E 和 E 中的所有反向边 E_f = E 和 E中的所有反向边 Ef=EE中的所有反向边
  • 边的容量: c f ( u , v ) c_f(u, v) cf(u,v)
    • 原图中的边:剩下的容量,即 c ( u , v ) − f ( u , v ) c(u, v) - f(u, v) c(u,v)f(u,v)
    • 反向边:可以退回的流量,即 f ( v , u ) f(v, u) f(v,u)

重要结论:原网络的可行流 f f f 加上可行流对应的残留网络 G f G_f Gf,也是一个可行流

  • 对应边相加:若方向同则相加;若反向反则相减
  • 结论: ∣ f + f ′ ∣ = ∣ f ∣ + ∣ f ′ ∣ |f + f'| = |f| + |f'| f+f=f+f
  • 进一步,若残留网络没有可行流,那么原网络的可行流就一定是最大流

增广路径

在残留网络里,如果沿着容量大于 0 的边走,能走到汇点,则这条路径叫做增广路径

  • 若存在一个增广路径,根据 ∣ f + f ′ ∣ = ∣ f ∣ + ∣ f ′ ∣ |f + f'| = |f| + |f'| f+f=f+f,原来的可行流一定不是最大流
  • 若不存在增广路径,我们可以得出当前可行流就是最大流

将点集 V 分成 S 和 T 两个子集

  • 分割要满足 S ∪ T = V , S ∩ T = ∅ S ∪ T = V, S ∩ T = \emptyset ST=VST=
  • 点集不一定连通

割的容量: c ( S , T ) = ∑ u ∈ S ∑ v ∈ T c ( u , v ) c(S, T) = \sum_{u ∈ S} \sum_{v ∈ T} c(u, v) c(S,T)=uSvTc(u,v)

  • 最小割:最小割的容量
  • 割的容量不考虑反向边

割的流量: f ( S , T ) = ∑ u ∈ S ∑ v ∈ T f ( u , v ) − ∑ u ∈ T ∑ v ∈ S f ( u , v ) f(S, T) = \sum_{u ∈ S} \sum_{v ∈ T} f(u, v) - \sum_{u ∈ T} \sum_{v ∈ S} f(u, v) f(S,T)=uSvTf(u,v)uTvSf(u,v)

  • 流过去的流量减去流过来的流量
  • 割的流量考虑反向边

重要性质:

  • 对于任意一个割,割的流量一定小于等于割的容量,即 f ( S , T ) ≤ c ( S , T ) f(S, T) \leq c(S, T) f(S,T)c(S,T)

  • 割的流量等于原流网络的流量,即 f ( S , T ) = ∣ f ∣ f(S,T) = |f| f(S,T)=f

  • f ( X , Y ) = − f ( Y , X ) f(X, Y) = -f(Y, X) f(X,Y)=f(Y,X)

  • f ( Z , X ∪ Y ) = f ( Z , X ) + f ( Z , Y ) f(Z, X ∪ Y) = f(Z, X) + f(Z, Y) f(Z,XY)=f(Z,X)+f(Z,Y)

  • f ( X ∪ Y , Z ) = f ( X , Z ) + f ( Y , Z ) f(X ∪ Y, Z) = f(X, Z) + f(Y, Z) f(XY,Z)=f(X,Z)+f(Y,Z)

最大流最小割定理

以下三个条件是等价的

  1. 可行流 f f f 是最大流
  2. 可行流 f f f 的残留网络中不存在增广路
  3. 存在某个割 [ S , T ] [S, T] [S,T] ∣ f ∣ = c ( S , T ) |f| = c(S, T) f=c(S,T)

最大流

Edmonds-Karp 算法

算法步骤

维护流网络的残留网络,不断进行以下流程:

  1. 找一条增广路 f ′ f' f:可以用 BFS 进行搜索
  2. 更新残留网络 G f → G f + f ′ G_f → G_{f + f'} GfGf+f
程序代码
#include <iostream>
#include <algorithm>
#include <cstring>using namespace std;const int N = 1010, M = 20020, INF = 1e8;// 邻接表存储残留网络
// 正向边和反向边成对存在,正向边的下标异或上1得到方向边的下标
int n, m, S, T;
int h[N], e[M], f[M], ne[M], idx;  // f表示容量
int q[N], d[N], pre[N];
bool st[N];  // 避免重复搜索void add(int a, int b, int c)
{// 正向边 e[idx] = b, f[idx] = c, ne[idx] = h[a], h[a] = idx++;// 反向边,初始容量为0e[idx] = a, f[idx] = 0, ne[idx] = h[b], h[b] = idx++;
}// bfs找增广路
bool bfs()
{int hh = 0, tt = 0;memset(st, false, sizeof(st));q[0] = S, st[S] = true, d[S] = INF;while(hh <= tt) {// 从队列中弹出一个元素进行BFSint t = q[hh++];for(int i = h[t]; ~i; i = ne[i]) {// 节点t的临接边i的下一节点verint ver = e[i];// 没遍历过且边i的容量不为0if( !st[ver] && f[i] ) {st[ver] = true;// 流到节点ver的流量为流到t的流量和边i容量的最小值d[ver] = min(d[t], f[i]);// 记录节点ver前驱边的编号pre[ver] = i;if(ver == T)  return true;// ver入队q[++tt] = ver;}}}return false;
}// EK 算法
int EK()
{int r = 0;while( bfs() ) {// 加上增广路的流量r += d[T];// 更新残留网络for(int i = T; i != S; i = e[pre[i] ^ 1]) {// 正向边更新f[pre[i]] -= d[T];// 反向边更新f[pre[i] ^ 1] += d[T];}}return r;
}int main()
{// 点数、边数、源点、汇点cin >> n >> m >> S >> T;// 初始化邻接表memset(h, -1, sizeof(h));while( m-- ) {int a, b, c;// 边ab的容量为ccin >> a >> b >> c;add(a, b, c);}cout << EK() << endl;return 0;
}
时间复杂度

O ( V E 2 ) O(VE^2) O(VE2)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/224054.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

单片机原理及应用:Keil μVision4和Proteus 8的配置介绍

笔者所在的专业最近开设了单片机课程&#xff0c;对笔者而言&#xff0c;虽然之前有一定的代码基础。但还是第一次面对既要求代码架构又要求电路仿真的领域。为了巩固知识和增强记忆&#xff0c;特此创建了这个专栏&#xff0c;谨以一名非电专业初学者的身份记录和分享知识。 …

OLED显示原理7T1C基础分析(PWM与DC调光)

文章目录 一、7T1C设计要点分析1、先回顾一下上篇 发光过程三个阶段---复位、补偿、发光2、设计关键点一&#xff1a;复位、补偿、发光三阶段 控制信号严格分离3、基本亮度控制策略---DC调光 && PWM调光4、PWM调光频率 之 低频PWM/高频PWM---EM信号的控制细节5、功耗优…

swing快速入门(二十七)

注释很详细&#xff0c;直接上代码 上一篇 新增内容 1.为按钮指定图标 2. 列表框的并列 3.菜单项绑定快捷键 4.控件悬浮提示信息 5.菜单项设置小图标 6.五种布局风格右键选择切换 package swing21_30;import javax.swing.*; import java.awt.*; import java.awt.event.…

使用 Elasticsearch 检测抄袭 (一)

作者&#xff1a;Priscilla Parodi 抄袭可以是直接的&#xff0c;涉及复制部分或全部内容&#xff0c;也可以是释义的&#xff0c;即通过更改一些单词或短语来重新表述作者的作品。 灵感和释义之间是有区别的。 即使你得出类似的结论&#xff0c;也可以阅读内容&#xff0c;获得…

【MybatisPlus快速入门】(2)SpringBoot整合MybatisPlus 之 标准数据层开发 代码示例

目录 1 标准CRUD使用2 新增3 删除4 修改5 根据ID查询6 查询所有7 MyBatis-Plus CRUD总结 之前我们已学习MyBatisPlus在代码示例与MyBatisPlus的简介&#xff0c;在这一节中我们重点学习的是数据层标准的CRUD(增删改查)的实现与分页功能。代码比较多&#xff0c;我们一个个来学习…

如何用Python写一个双均线策略

(永久免费&#xff0c;扫码加入) 本篇是量化系列的内容&#xff0c;已经购买小册的不要看了。 我的小册:(小白零基础用Python量化股票分析小册) ,原价199&#xff0c;限时特价39&#xff0c;满100人涨10元。 双均线策略应该是所有的股票软件&#xff0c;股票网站都必备的一个策…

【English】水果单词小小汇总~~

废物研究生&#xff0c;只要不搞科研干啥都是开心的&#xff0c;啊啊啊啊啊科研要命。作为一个水果怪&#xff08;每天不吃水果就要命的那种哈哈哈哈&#xff09;突然发现竟然就知道什么apple、banana、orange&#xff01;惭愧惭愧&#xff0c;正好兴致正浓&#xff0c;来整理一…

Python 爬虫之下载视频(四)

爬取某投币视频平台的小视频 文章目录 爬取某投币视频平台的小视频前言一、基本内容二、基本思路三、代码编写1.引入库2.设置手机模式3.跳过手动点击等操作4.获取视频下载地址5.获取视频标题6.下载保存 总结 前言 这篇用来记录一下如何爬取这个平台的视频&#xff0c;比如一些…

NUAA-云计算-考试

19级期末 问题 答案: md格式 自己想办法看 # 随堂测验#### 一、请简述GFS 的系统架构和特点。**1. 系统架构**- GFS将整个系统节点分为三类角色&#xff1a;- Client&#xff08;客户端&#xff09;&#xff1a;Client是GFS提供给应用程序的访问接口&#xff0c;以库文件的…

C语言如何生成随机数以及设置随机数的范围。(超详细)

文章目录 前言一、随机数的生成1.rand函数2.srand函数3.time函数4.生成随机数的代码如下&#xff1a; 二、设置随机数的范围总结 前言 博主将会这篇文章介绍c语言如何生成随机数以及设置随机数的范围。创作不易请大家点点赞&#xff0c;点点关注。 一、随机数的生成 1.rand函…

Ubuntu20.04纯命令配置PCL(点云库)

Ubuntu20.04纯命令配置PCL&#xff08;点云库&#xff09; 最近在学习点云库&#xff08;PCL&#xff09;的使用&#xff0c;第一步就是在自己的电脑安装配置PCL。 首先&#xff0c;对于ubuntu 16.04以上版本&#xff0c;可以直接使用命令进行安装&#xff0c;新建好一个文件夹…

IDEA中Git的常用使用方式

IDEA中Git的常用使用方式 1.初次拉取远程仓库项目代码到本地2.初次提交本地项目代码到远程仓库新分支方式一&#xff1a;提交时把.git目录删除掉&#xff0c;不保留以往修改记录方式二&#xff1a;提交时不删除.git目录&#xff0c;保留以往修改记录 3.日常拉取、提交、推送代码…

基于Hexo+GitHub Pages 的个人博客搭建

基于HexoGitHub Pages 的个人博客搭建 步骤一&#xff1a;安装 Node.js 和 Git步骤二&#xff1a;创建Github Pages 仓库步骤二&#xff1a;安装 Hexo步骤三&#xff1a;创建 Hexo 项目步骤四&#xff1a;配置 Hexo步骤五&#xff1a;创建新文章步骤六&#xff1a;生成静态文件…

vscode | python | remote-SSH | Debug 配置 + CLIP4Clip实验记录

安装Extension 本地安装Remote-SSH、python 远程服务器上安装Python 难点&#xff1a;主机和远程服务器上安装Python扩展失败&#xff0c;可能是网络、代理等原因导致解决方法&#xff1a; 主机在官方网站下载Python扩展&#xff1a;https://marketplace.visualstudio.com/it…

AI绘画训练一个扩散模型-上集

介绍 AI绘画&#xff0c;其中最常见方案基于扩散模型&#xff0c;Stable Diffusion 在此基础上&#xff0c;增加了 VAE 模块和 CLIP 模块&#xff0c;本文搞了一个测试Demo&#xff0c;分为上下两集&#xff0c;第一集是denoising_diffusion_pytorch &#xff0c;第二集是diff…

数据库开发之图形化工具以及表操作的详细解析

2.3 图形化工具 2.3.1 介绍 前面我们讲解了DDL中关于数据库操作的SQL语句&#xff0c;在我们编写这些SQL时&#xff0c;都是在命令行当中完成的。大家在练习的时候应该也感受到了&#xff0c;在命令行当中来敲这些SQL语句很不方便&#xff0c;主要的原因有以下 3 点&#xff…

截断整型提升算数转换

文章目录 &#x1f680;前言&#x1f680;截断&#x1f680;整型提升✈️整型提升是怎样的 &#x1f680;算术转换 &#x1f680;前言 大家好啊&#xff01;这里阿辉补一下前面操作符遗漏的地方——截断、整型提升和算数转换 看这一篇要先会前面阿辉讲的数据的存储否则可能看不…

Dijkstra(迪杰斯特拉)算法总结

知识概览 Dijkstra算法适用于解决所有边权都是正数的最短路问题。Dijkstra算法分为朴素的Dijkstra算法和堆优化版的Dijkstra算法。朴素的Dijkstra算法时间复杂度为&#xff0c;适用于稠密图。堆优化版的Dijkstra算法时间复杂度为&#xff0c;适用于稀疏图。稠密图的边数m和是一…

React学习计划-React16--React基础(五)脚手架创建项目、todoList案例、配置代理、消息订阅与发布

一、使用脚手架create-react-app创建项目 react脚手架 xxx脚手架&#xff1a;用来帮助程序员快速创建一个基于xxx库的模板项目 包含了所有需要的配置&#xff08;语法检查、jsx编译、devServe…&#xff09;下载好了所有相关的依赖可以直接运行一个简单的效果 react提供了一个…

产品设计 之 创建完美产品需求文档的4个核心要点

客户描述他们想要的产品和最终交付的产品之间的误解一般很大&#xff0c;设计者和客户的角度不同&#xff0c;理解的程度也不同&#xff0c;就需要一个统一的交流中介。这里包含PRD。 为了说明理解误差的问题。下面这张有趣的图画可以精准阐述。 第一张图片展示了客户所描述…