LangChain 31 模块复用Prompt templates 提示词模板

LangChain系列文章

  1. LangChain 实现给动物取名字,
  2. LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字
  3. LangChain 3使用Agent访问Wikipedia和llm-math计算狗的平均年龄
  4. LangChain 4用向量数据库Faiss存储,读取YouTube的视频文本搜索Indexes for information retrieve
  5. LangChain 5易速鲜花内部问答系统
  6. LangChain 6根据图片生成推广文案HuggingFace中的image-caption模型
  7. LangChain 7 文本模型TextLangChain和聊天模型ChatLangChain
  8. LangChain 8 模型Model I/O:输入提示、调用模型、解析输出
  9. LangChain 9 模型Model I/O 聊天提示词ChatPromptTemplate, 少量样本提示词FewShotPrompt
  10. LangChain 10思维链Chain of Thought一步一步的思考 think step by step
  11. LangChain 11实现思维树Implementing the Tree of Thoughts in LangChain’s Chain
  12. LangChain 12调用模型HuggingFace中的Llama2和Google Flan t5
  13. LangChain 13输出解析Output Parsers 自动修复解析器
  14. LangChain 14 SequencialChain链接不同的组件
  15. LangChain 15根据问题自动路由Router Chain确定用户的意图
  16. LangChain 16 通过Memory记住历史对话的内容
  17. LangChain 17 LangSmith调试、测试、评估和监视基于任何LLM框架构建的链和智能代理
  18. LangChain 18 LangSmith监控评估Agent并创建对应的数据库
  19. LangChain 19 Agents Reason+Action自定义agent处理OpenAI的计算缺陷
  20. LangChain 20 Agents调用google搜索API搜索市场价格 Reason Action:在语言模型中协同推理和行动
  21. LangChain 21 Agents自问自答与搜索 Self-ask with search
  22. LangChain 22 LangServe用于一键部署LangChain应用程序
  23. LangChain 23 Agents中的Tools用于增强和扩展智能代理agent的功能
  24. LangChain 24 对本地文档的搜索RAG检索增强生成Retrieval-augmented generation
  25. LangChain 25: SQL Agent通过自然语言查询数据库sqlite
  26. LangChain 26: 回调函数callbacks打印prompt verbose调用
  27. LangChain 27 AI Agents角色扮演多轮对话解决问题CAMEL
  28. LangChain 28 BabyAGI编写旧金山的天气预报
  29. LangChain 29 调试Debugging 详细信息verbose
  30. LangChain 30 ChatGPT LLM将字符串作为输入并返回字符串Chat Model将消息列表作为输入并返回消息

在这里插入图片描述

Prompt templates 提示词模板

大多数LLM应用程序不会直接将用户输入传递给LLM。通常,它们会将用户输入添加到一个更大的文本片段中,称为提示模板,该模板提供有关特定任务的附加上下文。

在前面的示例中,我们传递给模型的文本包含生成公司名称的说明。对于我们的应用程序,如果用户只需提供公司/产品的描述而不必担心给模型提供说明,那将是很好的。

PromptTemplates正是为此而设计的!它们捆绑了从用户输入到完全格式化提示的所有逻辑。这可以非常简单地开始-例如,用于生成上述字符串的提示只是:

from langchain.prompts import PromptTemplateprompt = PromptTemplate.from_template("制造{product}的公司取什么好名字?")
prompt.format(product="彩色袜子")
制造彩色袜子的公司取什么好名字?

然而,使用这些而不是原始字符串格式化的优势有几个。你可以“部分”地提取变量 - 例如,你可以一次只格式化一些变量。你可以将它们组合在一起,轻松地将不同的模板组合成单个提示。有关这些功能的详细说明,请参阅有关提示的部分。

PromptTemplates 也可以用于生成消息列表。在这种情况下,提示不仅包含有关内容的信息,还包含每条消息(其角色,其在列表中的位置等)的信息。在这里,最常见的情况是 ChatPromptTemplateChatMessageTemplates 的列表。每个 ChatMessageTemplate 包含有关如何格式化该 ChatMessage 的说明 - 其角色,以及其内容。让我们在下面看一下:

# 导入Langchain库中的OpenAI模块,该模块提供了与OpenAI语言模型交互的功能
from langchain.llms import OpenAI  # 导入Langchain库中的PromptTemplate模块,用于创建和管理提示模板
from langchain.prompts import PromptTemplate  # 导入Langchain库中的LLMChain模块,它允许构建基于大型语言模型的处理链
from langchain.chains import LLMChain  # 导入dotenv库,用于从.env文件加载环境变量,这对于管理敏感数据如API密钥很有用
from dotenv import load_dotenv  # 导入Langchain库中的ChatOpenAI类,用于创建和管理OpenAI聊天模型的实例。
from langchain.chat_models import ChatOpenAI# 调用dotenv库的load_dotenv函数来加载.env文件中的环境变量。
# 这通常用于管理敏感数据,如API密钥。
load_dotenv()  # 创建一个ChatOpenAI实例,配置它使用gpt-3.5-turbo模型,
# 设定温度参数为0.7(控制创造性的随机性)和最大令牌数为60(限制响应长度)。
chat = ChatOpenAI(model="gpt-3.5-turbo",temperature=0.7,max_tokens=120
)
# 导入Langchain库中的模板类,用于创建聊天式的提示。
from langchain.prompts import (ChatPromptTemplate,SystemMessagePromptTemplate,HumanMessagePromptTemplate
)template = "你是一个很有帮助的助手,可以进行翻译语言从 {input_language} 到 {output_language}."
human_template = "{text}"chat_prompt = ChatPromptTemplate.from_messages([("system", template),("human", human_template),
])prompt = chat_prompt.format_messages(input_language="English", output_language="Chinese", text="I love programming.")
print('prompt >>> ', prompt)# 使用chat函数(需要事先定义)发送生成的提示,获取结果。
result = chat(prompt)# 打印聊天结果。
print('result >>> ', result)
[zgpeace@zgpeaces-MacBook-Pro langchain-llm-app (develop ✗)]$ python Basic/chat_llm_prompt_template.py                                  ──(Sat,Dec23)─┘
prompt >>>  [SystemMessage(content='你是一个很有帮助的助手,可以进行翻译语言从 English 到 Chinese.'), HumanMessage(content='I love programming.')]
result >>>  content='我热爱编程。'

ChatPromptTemplates也可以用其他方式构建 - 详细信息请参阅提示部分。

代码

https://github.com/zgpeace/pets-name-langchain/tree/develop

参考

https://python.langchain.com/docs/get_started/quickstart

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/224168.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Tofu5m目标识别跟踪模块 跟踪模块

Tofu5m 是高性价比目标识别跟踪模块,支持可见光视频或红外网络视频的输入,支持视频下的多类型物体检测、识别、跟踪等功能。 产品支持视频编码、设备管理、目标检测、深度学习识别、跟踪等功能,提供多机版与触控版管理软件,为二次…

Redux与React环境准备、实现counter(及传参)、异步获取数据

环境说明: 一:说明 在React中使用redux,官方要求安装两个其他插件:Redux Toolkit和react-redux 1. Redux ToolKit(RTK) - 官方推荐编写Redux逻辑的方式,是一套工具的集合集,简化书写方式 (简化…

通过字符设备驱动点亮板子上的led灯

通过字符设备驱动点亮板子上的led灯 app: test.c char buf[3] 1 0 0 0 1 0 0 0 1 ------------------|------------------------ kernel: led_driver.c -------------------|------------------------ hardware: RGB_led 应用程序如何将数据传递给驱动(读写…

Kafka日志

位置 server.properties配置文件中通过log.dir指定日志存储目录 log.dir/{topic}-{partition} 核心文件 .log 存储消息的日志文件,固定大小为1G,写满后会新增一个文件,文件名表示当前日志文件记录的第一条消息的偏移量。 .index 以偏移…

计算机视觉基础(13)——深度估计

前言 本节是计算机视觉的最后一节,我们将学习深度估计。从深度的概念和度量入手,依次学习单目深度估计和双目/多目深度估计,需要知道深度估计的经典方法,掌握深度估计的评价标准,注意结合对极几何进行分析和思考。 一、…

医疗影像中DR的骨抑制

1 背景 在DR的拍摄中,根据肺部和脊肋骨两种组织,在不同能量X射线的照射下,衰减的系数不同的特点,可以通过两次不同剂量的曝光后,通过算法,得到一张骨骼的图像和一张肺部图像。 通过一些机构的统计&#x…

MATLAB - 读取双摆杆上的 IMU 数据

系列文章目录 前言 本示例展示了如何从安装在双摆杆上的两个 IMU 传感器生成惯性测量单元 (IMU) 读数。双摆使用 Simscape Multibody™ 进行建模。有关使用 Simscape Multibody™ 构建简易摆的分步示例,请参阅简易摆建模(Simscape Multibody&#xff09…

互联网+建筑工地源码,基于微服务+Java+Spring Cloud +Vue+UniApp开发

一、智慧工地概念 智慧工地就是互联网建筑工地,是将互联网的理念和技术引入建筑工地,然后以物联网、移动互联网技术为基础,充分应用BIM、大数据、人工智能、移动通讯、云计算、物联网等信息技术,通过人机交互、感知、决策、执行和…

Nginx优化(重点)与防盗链(新版)

Nginx优化(重点)与防盗链 Nginx优化(重点)与防盗链一、隐藏Nginx版本号1、修改配置文件2、修改源代码 二、修改Nginx用户与组1、编译安装时指定用户与组2、修改配置文件指定用户与组 三、配置Nginx网页的缓存时间四、实现Nginx的日志切割1、data的用法2、编写脚本进行日志切割的…

IntelliJ IDEA Community(社区版)下载及安装自用版

IntelliJ IDEA Community(社区版)下载及安装自用版 估计是个开发都逃脱不了用IDEA的命运吧,这么好的软件,白嫖了好多年。感恩。 现在很多公司已经不让用商业版的破解版了,所以这里讲的是社区版。 区别: 商…

【单调栈】LeetCode:2818操作使得分最大

作者推荐 map|动态规划|单调栈|LeetCode975:奇偶跳 本文涉及的基础知识点 单调栈分类、封装和总结 题目 给你一个长度为 n 的正整数数组 nums 和一个整数 k 。 一开始,你的分数为 1 。你可以进行以下操作至多 k 次,目标是使你的分数最大&#xff1a…

零基础入门网络安全必看的5本书籍(附PDF)

书中自有黄金屋,书中自有颜如玉。很多人学习一门技术都会看大量的书籍,经常也有朋友询问:零基础刚入门,应该看哪些书?应该怎么学?等等问题。今天就整理了5本零基础入门网络安全必看书籍,希望能帮…

hyper-v ubuntu 3节点 k8s集群搭建

前奏 搭建一主二从的k8s集群,如图所示,准备3台虚拟机。 不会创建的同学,可以看我上上篇博客:https://blog.csdn.net/dawnto/article/details/135086252 和上篇博客:https://blog.csdn.net/dawnto/article/details/135…

Python 数据分析 Matplotlib篇 plot设置线条样式(第2讲)

Python 数据分析 Matplotlib篇 plot设置线条样式(第2讲)         🍹博主 侯小啾 感谢您的支持与信赖。☀️ 🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ�…

Django(二)

1.django框架 1.1 安装 pip install django3.21.2 命令行 创建项目 cd 指定目录 django-admin startproject 项目名mysite ├── manage.py [项目的管理工具] └── mysite├── __init__.py├── settings.py 【配置文件,只有一部分…

【Linux系统基础】(2)在Linux上部署MySQL、RabbitMQ、ElasticSearch等各类软件

实战章节:在Linux上部署各类软件 前言 为什么学习各类软件在Linux上的部署 在前面,我们学习了许多的Linux命令和高级技巧,这些知识点比较零散,同学们跟随着课程的内容进行练习虽然可以基础掌握这些命令和技巧的使用,…

【毕业快刊】IF12分,中科院2区,仅50天录用,17天见刊!国人占比第一!

计算机类 • 好刊解读 今天小编带来Springer旗下计算机领域高分快刊,如您有投稿需求,可作为重点关注!后文有相关领域真实发表案例,供您投稿参考~ 01 期刊简介 Artificial Intelligence Review ✅出版社:Springer ✅…

Wireshark网络工具来了

Wireshark是网络包分析工具。网络包分析工具的主要作用是尝试捕获网络包,并尝试显示包的尽可能详细的情况。 Wireshark是一个免费开源软件,不需要付费,免费使用,可以直接登陆到Wireshark的官网下载安装。 在windows环境中&#x…

一个利用摸鱼时间背单词的软件

大家好,我是 Java陈序员。 最近进入了考试季,各种考试,英语四六级、考研、期末考等。不知道大家的英语四六级成绩怎么样呢? 记得大学时,英语四级都是靠高中学习积累的老本才勉强过关。 而六级则是考了多次&#xff…

50 个具有挑战性的概率问题 [第 5 部分]:方形硬币

一、说明 你好,我最近对与概率相关的问题产生了兴趣。我偶然发现了 Frederick Mosteller 所著的《五十个具有挑战性的概率问题及其解决方案》这本书。我认为创建一个系列来讨论这些可能作为面试问题出现的迷人问题会很有趣。每篇文章仅包含 1 个问题,使其…