初识Stable Diffusion

界面选项解读

这是在趋动云上部署的Stable Diffusion

txt2img

prompt

(1)分割符号:使用逗号 , 用于分割词缀,且有一定权重排序功能,逗号前权重高,逗号后权重低

(2)建议的通用范式:建议用以下归类的三大部分来准备相关提示词:前缀(画质词+画风词+镜头效果+光照效果) + 主体(人物&对象+姿势+服装+道具) + 场景(环境+细节)

(3)更改提示词权重:使用小括号()增加模型对被括住提示词的注意 (提高权重)。用 (xxx: ) 语法形式来提升权重,其中 xxx 是你要强调的词 1.x 代表要提升的比例,如 1.5 就是提升 150% 的权重。权重取值范围 0.4-1.6,权重太小容易被忽视,太大容易拟合图像出错。例:(beautiful:1.3) 。叠加权重:通过叠加小括号方式提高权重,每加一层相当于提高1.1倍权重,例:((((beautiful eyes))))相当于(beautiful eyes: 1.1*1.1*1.1)

  • (PromptA:权重):用于提高或降低该提示词的权重比例,注:数值大于1提高,小于1降低
  • (PromptB):PromptB的权重为1.1=(PromptA:1.1)
  • {PromptC}: PromptC的权重为1.05=(PromptB:1.05)
  • [PromptD]: PromptD的权重减弱0.952=(PromptC:0.952)
  • ((PromptE)=(PromptE:1.1*1.1)
  • {{PromptF}}=(PromptF:1.05*1.05)
  • [[PromptG]]=(PromptG:0.952*0.952)

(4)调取 LoRA & Hypernetworks 模型:使用尖括号 <> 调取LoRA或超网络模型。
按照下述形式输入:<lora:filename:multiplier> 或 <hypernet:filename:multiplier> 可调取相应模型,例:<lora:cuteGirlMix4_v10:0.5> 。
注:要先确保在【...\models\lora】或【...\models\hypernetworks】文件夹已保存好相关模型文件

(5)分布与交替渲染:使用方框号 [] 可应用较为复杂的分布与交替需求。

  • [A:B:step] 代表执行A效果到多少进度,然后开始执行B。例:[blue:red:0.4],渲染蓝色到40%进度渲染红色。注:step > 1 时表示该组合在前多少步时做为 A 渲染,之后作为 B 渲染。step < 1 时表示迭代步数百分比。
  • [A:0.5] 这样写的含义是从50%进度开始渲染A
  • [A::step] 渲染到多少进度的时候去除A
  • [A|B] A和B交替混合渲染

(6)反向提示词:反向提示词(Negative prompt),就是我们不想出现什么的描述。例:NSFW 不适合在工作时看的内容,包括限制级,还有低画质相关和一些容易变形身体部位的描述等。
注:在C站可下载一个叫 Easynegative 的文件,它的作用是把一些常用的反向提示词整合在一起了,让我们只需输入简单的关键词就能得到较好效果。把它放到 xxx/enbeddings 文件夹,需要触发时在 negative prompt 中输入 easynegative 即可生效。

(7)一些注意说明:

  1. AI 会按照 prompt 提示词输入的先后顺序和所分配权重来执行去噪工作;
  2. AI 也会依照概率来选择性执行,如提示词之间有冲突,AI 会根据权重确定的概率来随机选择执行哪个提示词。
  3. 越靠前的 Tag 权重越大;比如景色Tag在前,人物就会小,相反的人物会变大或半身。
  4. 生成图片的大小会影响 Prompt 的效果,图片越大需要的 Prompt 越多,不然 Prompt 会相互污染。
  5. Prompt 支持使用 emoji,且表现力较好,可通过添加 emoji 图来达到效果。如 形容喜欢表情, 可修手。
  6. 连接符号,使用 +, and, |, _ 都可连接描述词,但各自细节效果有所不同。

文章链接:【Stable Diffusion】Prompt 篇 - 知乎 (zhihu.com)

采样器

先放结论:

  1. 如果只是想得到一些较为简单的结果,选用欧拉(Eular)或者Heun,并可适当减少Heun的步骤数以减少时间
  2. 对于侧重于速度、融合、新颖且质量不错的结果,建议选择:
  • DPM++ 2M Karras, Step Range:20-30
  • UniPc, Step Range: 20-30

     3. 期望得到高质量的图像,且不关心图像是否收敛:

  • DPM ++ SDE Karras, Step Range:8-12
  • DDIM, Step Range:10-15

     4. 如果期望得到稳定、可重现的图像,避免采用任何祖先采样器

Sampling steps

增加采样步数,会缩小每一步的降噪幅度,有助于减少采样的截断误差

每一步迭代都是基于前一步的图像进行细化,理论上步数越多,图像越精细。但是,过多的步数会导致资源消耗增加和生成速度变慢,而且在达到一定步数后,图像质量的提升会逐渐减少

Sampling method
经典ODE求解器
  • Euler采样器:欧拉采样方法。
  • Heun采样器:欧拉的一个更准确但是较慢的版本。
  • LMS采样器:线性多步法,与欧拉采样器速度相仿,但是更准确。
祖先采样器

名称中带有a标识的采样器表示这一类采样器是祖先采样器。这一类采样器在每个采样步骤中都会向图像添加噪声,采样结果具有一定的随机性。

  • Euler a
  • DPM2 a
  • DPM++ 2S a
  • DPM++ 2S a Karras

由于这一类采样器的特性,图像不会收敛。因此为了保证重现性,例如在通过多帧组合构建动画时,应当尽量避免采用具有随机性的采样器。需要注意的是,部分采样器的名字中虽然没有明确标识属于祖先采样器,但也属于随机采样器。如果希望生成的图像具有细微的变化,推荐使用variation seed进行调整。

Karras

带有Karras字样的采样器,最大的特色是使用了Karras论文中建议的噪音计划表。主要的表现在于噪点步长在接近尾声时会更小,有助于图像的质量提升。

DDIM与PLMS(已过时,不再使用)

DDIM(去噪扩散隐式模型)和PLMS(伪线性多步方法)是伴随Stable Diffusion v1提出的采样方法,DDIM也是最早被用于扩散模型的采样器。PLMS是DDIM的一种更快的替代方案。当前这两种采样方法都不再广泛使用。

DPM与DPM++

DPM(扩散概率模型求解器)这一系列的采样器于2022年发布,代表了具有类似体系结构的求解器系列。

由于DPM会自适应调整步长,不能保证在约定的采样步骤内完成任务,整体速度可能会比较慢。对Tag的利用率较高,在使用时建议适当放大采样的步骤数以获得较好的效果。

DPM++是对DPM的改进,DPM2采用二阶方法,其结果更准确,但是相应的也会更慢一些。

UniPC

UniPC(统一预测校正器),一种可以在5-10个步骤中实现高质量图像生成的方法。

K-diffusion

用于指代Katherine Crowson's k-diffusion项目中实现的Karras 2022论文中提及的的相关采样器。当前常用的采样器中,除了DDIM、PLMS与UniPC之外的采样器均来自于k-diffusion

DPM++ Family

DPM++ SDE与DPM++ SDE Karras的收敛能力较差,图像的波动情况较为显著。

DPM++ 2M与DPM++ 2M Karras表现较好,当步数足够大时,Karras方法收敛的更快。

文章链接:Stable Diffusion-采样器篇 - 知乎 (zhihu.com)

Hires.fix

提供了一个方便的选项,可以部分地以较低分辨率呈现图像,然后将其放大,最后在高分辨率下添加细节。换句话说,这相当于在txt2img中生成图像,通过自己选择的方法将其放大,然后在img2img中对现在已经放大的图像进行第二次处理,以进一步完善放大效果并创建最终结果。

Width&Height

图像的宽度和高度直接决定了其尺寸和分辨率。更大的图像能够包含更多细节和信息,但同时也要求更高的处理能力和更长的生成时间

Batch count&Batch size

这两个参数控制生成图像的数量和频率。通过调整它们,可以批量生成多个图像,提高效率。适当的批次数和数量设置可以帮助你更快地获取所需的图像,特别是在寻找那“完美一张”时

CFG Scale

CFG Scale参数控制提示词与生成图像之间的相关性。更高的数值意味着模型会更加专注于提示词的内容,生成更加符合描述的图像。这个参数对于调整生成图像的创意程度和精确度非常有用

Seed

种子值控制了图像生成的随机性。通过固定种子值,可以重现特定的图像结果,这对于复现喜欢的图像或进行微调非常有用

文章链接:Stable Diffusion参数设置介绍看这一篇就够了 - 哔哩哔哩 (bilibili.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/224726.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MyBatis见解4

10.MyBatis的动态SQL 10.5.trim标签 trim标签可以代替where标签、set标签 mapper //修改public void updateByUser2(User user);<update id"updateByUser2" parameterType"User">update user<!-- 增加SET前缀&#xff0c;忽略&#xff0c;后缀…

计算机网络复习-OSI TCP/IP 物理层

我膨胀了&#xff0c;挂我啊~ 作者简介&#xff1a; 每年都吐槽吉师网安奇怪的课程安排、全校正经学网络安全不超20人情景以及割韭菜企业合作的FW&#xff0c;今年是第一年。。 TCP/IP模型 先做两道题&#xff1a; TCP/IP协议模型由高层到低层分为哪几层&#xff1a; 这题…

VScode远程连接服务器,Pycharm专业版下载及远程连接(深度学习远程篇)

Visual Code、PyCharm专业版&#xff0c;本地和远程交互。 远程连接需要用到SSH协议的技术&#xff0c;常用的代码编辑器vscode 和 pycharm都有此类功能。社区版的pycharm是免费的&#xff0c;但是社区版不支持ssh连接服务器&#xff0c;只有专业版才可以&#xff0c;需要破解…

C# 读取Word表格到DataSet

目录 功能需求 Office 数据源的一些映射关系 范例运行环境 配置Office DCOM 关键代码 组件库引入 ​核心代码 杀掉进程 总结 功能需求 在应用项目里&#xff0c;多数情况下我们会遇到导入 Excel 文件数据到数据库的功能需求&#xff0c;但某些情况下&#xff0c;也存…

RasaGPT对话系统的工作原理

RasaGPT 结合了 Rasa 和 Langchain 这 2 个开源项目&#xff0c;当超出 Rasa 现有意图(out_of_scope)的时候&#xff0c;就会执行 ActionGPTFallback&#xff0c;本质上就是利用 Langchain 做了一个 RAG&#xff0c;调用 LLM API。RasaGPT 涉及的技术栈比较多而复杂&#xff0c…

js显示前七天的日期,前几天依次类推

1.效果图 2.js代码 function beforetime1() {let now new Date();//想获取前七天日期就减七&#xff0c;前六天就减六&#xff0c;以此类推var date new Date(now.getTime() - 7 * 24 * 3600 * 1000);var y date.getFullYear();var m date.getMonth() 1;m m < 10 ? …

【物联网】光影之谜:RGB-LED传感器引领科技变革之路

​​&#x1f308;个人主页&#xff1a;Sarapines Programmer&#x1f525; 系列专栏&#xff1a;《物联网实战 | 数字奇迹记》⏰翰墨致赠&#xff1a;狂风挟雷霆舞苍穹&#xff0c;剑气横扫万里空。英雄豪情铸不朽&#xff0c;激荡壮志燃热风。 ​ 目录 ⛳️1. 初识物联网 ⛳…

TikTok与环保:短视频如何引领可持续生活方式?

在数字时代&#xff0c;社交媒体平台扮演着塑造文化和价值观的关键角色。而TikTok&#xff0c;作为一款全球短视频平台&#xff0c;不仅塑造着用户的娱乐方式&#xff0c;还在悄然地引领着可持续生活方式的潮流。本文将深入探讨TikTok与环保之间的关系&#xff0c;分析短视频如…

【FPGA】分享一些FPGA高速信号处理相关的书籍

在做FPGA工程师的这些年&#xff0c;买过好多书&#xff0c;也看过好多书&#xff0c;分享一下。 后续会慢慢的补充书评。 【FPGA】分享一些FPGA入门学习的书籍【FPGA】分享一些FPGA协同MATLAB开发的书籍 【FPGA】分享一些FPGA视频图像处理相关的书籍 【FPGA】分享一些FPGA高速…

顺序表的基本操作(必学)

目录 线性表&#xff1a; 顺序表&#xff1a; 概念和结构&#xff1a; 动态顺序表常用操作实现&#xff1a; 头文件&#xff08;数组顺序表的声明&#xff09;&#xff1a; 各种基本操作总的声明&#xff1a; 顺序表的初始化&#xff1a; 顺序表的销毁 顺序表的打印 …

【Vue2+3入门到实战】(4)Vue基础之指令修饰符 、v-bind对样式增强的操作、v-model应用于其他表单元素 详细示例

目录 一、今日学习目标1.指令补充 二、指令修饰符1.什么是指令修饰符&#xff1f;2.按键修饰符3.v-model修饰符4.事件修饰符 三、v-bind对样式控制的增强-操作class1.语法&#xff1a;2.对象语法3.数组语法4.代码练习 四、京东秒杀-tab栏切换导航高亮1.需求&#xff1a;2.准备代…

大数据深度解析NLP文本摘要技术:定义、应用与PyTorch实战

文章目录 大数据深度解析NLP文本摘要技术&#xff1a;定义、应用与PyTorch实战1. 概述1.1 什么是文本摘要&#xff1f;1.2 为什么需要文本摘要&#xff1f; 2. 发展历程2.1 早期技术2.2 统计方法的崛起2.3 深度学习的应用2.4 文本摘要的演变趋势 3. 主要任务3.1 单文档摘要3.2 …

2023年国赛高教杯数学建模E题黄河水沙监测数据分析解题全过程文档及程序

2023年国赛高教杯数学建模 E题 黄河水沙监测数据分析 原题再现 黄河是中华民族的母亲河。研究黄河水沙通量的变化规律对沿黄流域的环境治理、气候变化和人民生活的影响&#xff0c;以及对优化黄河流域水资源分配、协调人地关系、调水调沙、防洪减灾等方面都具有重要的理论指导…

mmdetection使用projects/gradio_demo

我用google的colab搭建。 # Check nvcc version !nvcc -V # Check GCC version !gcc --version # install dependencies: (use cu111 because colab has CUDA 11.1) %pip install -U openmim !mim install "mmengine>0.7.0" !mim install "mmcv>2.0.0rc4…

智能优化算法应用:基于蜣螂算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于蜣螂算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于蜣螂算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.蜣螂算法4.实验参数设定5.算法结果6.参考文献7.MA…

WPS复选框里打对号,显示小太阳或粗黑圆圈的问题解决方法

问题描述 WPS是时下最流行的字处理软件之一&#xff0c;是目前唯一可以和微软office办公套件相抗衡的国产软件。然而&#xff0c;在使用WPS的过程中也会出现一些莫名其妙的错误&#xff0c;如利用WPS打开docx文件时&#xff0c;如果文件包含复选框&#xff0c;经常会出…

民富购:塑造数字时代下的电商革新与社会责任典范

在数字经济时代,电子商务已经成为建立市场关系、创新产业和服务业态、促进经济增长的重要途径和手段。特别是在中国,新型电子商务的迅猛发展已经改变了生产和生活的方方面面,不仅催生了众多新业态,还通过“互联网”战略让许多传统产业和服务焕发了新的生机。民富购,作为扬羊(广…

【数据结构入门精讲 | 第十七篇】一文讲清图及各类图算法

在上一篇中我们进行了的并查集相关练习&#xff0c;在这一篇中我们将学习图的知识点。 目录 概念深度优先DFS伪代码 广度优先BFS伪代码 最短路径算法&#xff08;Dijkstra&#xff09;伪代码 Floyd算法拓扑排序逆拓扑排序 概念 下面介绍几种在对图操作时常用的算法。 深度优先D…

融资项目——swagger2的注解

1. ApiModel与ApiModelProperty(在实体类中使用) 如上图&#xff0c;ApiModel加在实体类上方&#xff0c;用于整体描述实体类。ApiModelProperty(value"xxx",example"xxx")放于每个属性上方&#xff0c;用于对属性进行描述。swagger2网页上的效果如下图&am…

2023RT-Thread开发者大会

参加了一次RT-Thread的开发者大会&#xff0c;相当有意思&#xff0c;虽然一天奔波挺累&#xff0c;但睡了半天之后简单剪了下22号的视频&#xff0c;也就有时间写自己的参会笔记了。 与openEuler社区不同&#xff0c;RT-Thread社区更专注于嵌入式&#xff0c;与硬件厂商结合…