YOLOv8改进 | 主干篇 | EfficientNetV1均衡缩放网络改进特征提取层

一、本文介绍

这次给大家带来的改进机制是EfficientNetV1主干,用其替换我们YOLOv8的特征提取网络,其主要思想是通过均衡地缩放网络的深度、宽度和分辨率,以提高卷积神经网络的性能。这种方法采用了一个简单但有效的复合系数,统一调整所有维度。经过我的实验该主干网络确实能够涨点在大中小三种物体检测上,同时该主干网络提供多种版本,大家可以在源代码中进行修改版本的使用。本文通过介绍其主要框架原理,然后教大家如何添加该网络结构到网络模型中。

推荐指数:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备    

训练结果对比图->  

目录

一、本文介绍

二、EfficientNetV1的框架原理

三、EfficientNetV1的核心代码

四、手把手教你添加EfficientNetV1机制

修改一

修改二

修改三 

修改四

修改五 

修改六 

修改七

修改八

五、EfficientNetV1的yaml文件

六、成功运行记录 

七、本文总结


二、EfficientNetV1的框架原理

官方论文地址: 官方论文地址点击即可跳转

官方代码地址: 官方代码地址点击即可跳转


EfficientNetV1的主要思想是通过均衡地缩放网络的深度、宽度和分辨率,以提高卷积神经网络的性能。这种方法采用了一个简单但有效的复合系数,统一调整所有维度。EfficientNet在多个方面优于现有的ConvNets,特别是在ImageNet数据集上,EfficientNet-B7模型在保持较小的大小和更快的推理速度的同时,达到了84.3%的顶级准确率。此外,EfficientNet还在CIFAR-100和Flowers等其他数据集上展示了出色的迁移学习性能,参数数量大大减少。

总结:EfficientNetV1的主要创新为提出了一种新的模型缩放方法,该方法使用一个复合系数来统一地缩放网络的深度、宽度和分辨率,实现更均衡的网络扩展

​这张图展示了EfficientNet提出的模型缩放方法。图中(a)表示基线网络,而图(b)-(d)表示传统的缩放方法,只增加网络的一个维度:宽度、深度或分辨率。图(e)展示了EfficientNet的创新之处,即复合缩放方法,它使用固定比例同时均匀地缩放网络的所有三个维度。


三、EfficientNetV1的核心代码

import re
import math
import collections
from functools import partial
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils import model_zoo# Parameters for the entire model (stem, all blocks, and head)
GlobalParams = collections.namedtuple('GlobalParams', ['width_coefficient', 'depth_coefficient', 'image_size', 'dropout_rate','num_classes', 'batch_norm_momentum', 'batch_norm_epsilon','drop_connect_rate', 'depth_divisor', 'min_depth', 'include_top'])# Parameters for an individual model block
BlockArgs = collections.namedtuple('BlockArgs', ['num_repeat', 'kernel_size', 'stride', 'expand_ratio','input_filters', 'output_filters', 'se_ratio', 'id_skip'])# Set GlobalParams and BlockArgs's defaults
GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields)
BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields)# Swish activation function
if hasattr(nn, 'SiLU'):Swish = nn.SiLU
else:# For compatibility with old PyTorch versionsclass Swish(nn.Module):def forward(self, x):return x * torch.sigmoid(x)# A memory-efficient implementation of Swish function
class SwishImplementation(torch.autograd.Function):@staticmethoddef forward(ctx, i):result = i * torch.sigmoid(i)ctx.save_for_backward(i)return result@staticmethoddef backward(ctx, grad_output):i = ctx.saved_tensors[0]sigmoid_i = torch.sigmoid(i)return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i)))class MemoryEfficientSwish(nn.Module):def forward(self, x):return SwishImplementation.apply(x)def round_filters(filters, global_params):"""Calculate and round number of filters based on width multiplier.Use width_coefficient, depth_divisor and min_depth of global_params.Args:filters (int): Filters number to be calculated.global_params (namedtuple): Global params of the model.Returns:new_filters: New filters number after calculating."""multiplier = global_params.width_coefficientif not multiplier:return filters# TODO: modify the params names.#       maybe the names (width_divisor,min_width)#       are more suitable than (depth_divisor,min_depth).divisor = global_params.depth_divisormin_depth = global_params.min_depthfilters *= multipliermin_depth = min_depth or divisor  # pay attention to this line when using min_depth# follow the formula transferred from official TensorFlow implementationnew_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor)if new_filters < 0.9 * filters:  # prevent rounding by more than 10%new_filters += divisorreturn int(new_filters)def round_repeats(repeats, global_params):"""Calculate module's repeat number of a block based on depth multiplier.Use depth_coefficient of global_params.Args:repeats (int): num_repeat to be calculated.global_params (namedtuple): Global params of the model.Returns:new repeat: New repeat number after calculating."""multiplier = global_params.depth_coefficientif not multiplier:return repeats# follow the formula transferred from official TensorFlow implementationreturn int(math.ceil(multiplier * repeats))def drop_connect(inputs, p, training):"""Drop connect.Args:input (tensor: BCWH): Input of this structure.p (float: 0.0~1.0): Probability of drop connection.training (bool): The running mode.Returns:output: Output after drop connection."""assert 0 <= p <= 1, 'p must be in range of [0,1]'if not training:return inputsbatch_size = inputs.shape[0]keep_prob = 1 - p# generate binary_tensor mask according to probability (p for 0, 1-p for 1)random_tensor = keep_probrandom_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device)binary_tensor = torch.floor(random_tensor)output = inputs / keep_prob * binary_tensorreturn outputdef get_width_and_height_from_size(x):"""Obtain height and width from x.Args:x (int, tuple or list): Data size.Returns:size: A tuple or list (H,W)."""if isinstance(x, int):return x, xif isinstance(x, list) or isinstance(x, tuple):return xelse:raise TypeError()def calculate_output_image_size(input_image_size, stride):"""Calculates the output image size when using Conv2dSamePadding with a stride.Necessary for static padding. Thanks to mannatsingh for pointing this out.Args:input_image_size (int, tuple or list): Size of input image.stride (int, tuple or list): Conv2d operation's stride.Returns:output_image_size: A list [H,W]."""if input_image_size is None:return Noneimage_height, image_width = get_width_and_height_from_size(input_image_size)stride = stride if isinstance(stride, int) else stride[0]image_height = int(math.ceil(image_height / stride))image_width = int(math.ceil(image_width / stride))return [image_height, image_width]# Note:
# The following 'SamePadding' functions make output size equal ceil(input size/stride).
# Only when stride equals 1, can the output size be the same as input size.
# Don't be confused by their function names ! ! !def get_same_padding_conv2d(image_size=None):"""Chooses static padding if you have specified an image size, and dynamic padding otherwise.Static padding is necessary for ONNX exporting of models.Args:image_size (int or tuple): Size of the image.Returns:Conv2dDynamicSamePadding or Conv2dStaticSamePadding."""if image_size is None:return Conv2dDynamicSamePaddingelse:return partial(Conv2dStaticSamePadding, image_size=image_size)class Conv2dDynamicSamePadding(nn.Conv2d):"""2D Convolutions like TensorFlow, for a dynamic image size.The padding is operated in forward function by calculating dynamically."""# Tips for 'SAME' mode padding.#     Given the following:#         i: width or height#         s: stride#         k: kernel size#         d: dilation#         p: padding#     Output after Conv2d:#         o = floor((i+p-((k-1)*d+1))/s+1)# If o equals i, i = floor((i+p-((k-1)*d+1))/s+1),# => p = (i-1)*s+((k-1)*d+1)-idef __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True):super().__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias)self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2def forward(self, x):ih, iw = x.size()[-2:]kh, kw = self.weight.size()[-2:]sh, sw = self.strideoh, ow = math.ceil(ih / sh), math.ceil(iw / sw)  # change the output size according to stride ! ! !pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)if pad_h > 0 or pad_w > 0:x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)class Conv2dStaticSamePadding(nn.Conv2d):"""2D Convolutions like TensorFlow's 'SAME' mode, with the given input image size.The padding mudule is calculated in construction function, then used in forward."""# With the same calculation as Conv2dDynamicSamePaddingdef __init__(self, in_channels, out_channels, kernel_size, stride=1, image_size=None, **kwargs):super().__init__(in_channels, out_channels, kernel_size, stride, **kwargs)self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2# Calculate padding based on image size and save itassert image_size is not Noneih, iw = (image_size, image_size) if isinstance(image_size, int) else image_sizekh, kw = self.weight.size()[-2:]sh, sw = self.strideoh, ow = math.ceil(ih / sh), math.ceil(iw / sw)pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)if pad_h > 0 or pad_w > 0:self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2,pad_h // 2, pad_h - pad_h // 2))else:self.static_padding = nn.Identity()def forward(self, x):x = self.static_padding(x)x = F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)return xdef get_same_padding_maxPool2d(image_size=None):"""Chooses static padding if you have specified an image size, and dynamic padding otherwise.Static padding is necessary for ONNX exporting of models.Args:image_size (int or tuple): Size of the image.Returns:MaxPool2dDynamicSamePadding or MaxPool2dStaticSamePadding."""if image_size is None:return MaxPool2dDynamicSamePaddingelse:return partial(MaxPool2dStaticSamePadding, image_size=image_size)class MaxPool2dDynamicSamePadding(nn.MaxPool2d):"""2D MaxPooling like TensorFlow's 'SAME' mode, with a dynamic image size.The padding is operated in forward function by calculating dynamically."""def __init__(self, kernel_size, stride, padding=0, dilation=1, return_indices=False, ceil_mode=False):super().__init__(kernel_size, stride, padding, dilation, return_indices, ceil_mode)self.stride = [self.stride] * 2 if isinstance(self.stride, int) else self.strideself.kernel_size = [self.kernel_size] * 2 if isinstance(self.kernel_size, int) else self.kernel_sizeself.dilation = [self.dilation] * 2 if isinstance(self.dilation, int) else self.dilationdef forward(self, x):ih, iw = x.size()[-2:]kh, kw = self.kernel_sizesh, sw = self.strideoh, ow = math.ceil(ih / sh), math.ceil(iw / sw)pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)if pad_h > 0 or pad_w > 0:x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])return F.max_pool2d(x, self.kernel_size, self.stride, self.padding,self.dilation, self.ceil_mode, self.return_indices)class MaxPool2dStaticSamePadding(nn.MaxPool2d):"""2D MaxPooling like TensorFlow's 'SAME' mode, with the given input image size.The padding mudule is calculated in construction function, then used in forward."""def __init__(self, kernel_size, stride, image_size=None, **kwargs):super().__init__(kernel_size, stride, **kwargs)self.stride = [self.stride] * 2 if isinstance(self.stride, int) else self.strideself.kernel_size = [self.kernel_size] * 2 if isinstance(self.kernel_size, int) else self.kernel_sizeself.dilation = [self.dilation] * 2 if isinstance(self.dilation, int) else self.dilation# Calculate padding based on image size and save itassert image_size is not Noneih, iw = (image_size, image_size) if isinstance(image_size, int) else image_sizekh, kw = self.kernel_sizesh, sw = self.strideoh, ow = math.ceil(ih / sh), math.ceil(iw / sw)pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)if pad_h > 0 or pad_w > 0:self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2))else:self.static_padding = nn.Identity()def forward(self, x):x = self.static_padding(x)x = F.max_pool2d(x, self.kernel_size, self.stride, self.padding,self.dilation, self.ceil_mode, self.return_indices)return x################################################################################
# Helper functions for loading model params
################################################################################# BlockDecoder: A Class for encoding and decoding BlockArgs
# efficientnet_params: A function to query compound coefficient
# get_model_params and efficientnet:
#     Functions to get BlockArgs and GlobalParams for efficientnet
# url_map and url_map_advprop: Dicts of url_map for pretrained weights
# load_pretrained_weights: A function to load pretrained weightsclass BlockDecoder(object):"""Block Decoder for readability,straight from the official TensorFlow repository."""@staticmethoddef _decode_block_string(block_string):"""Get a block through a string notation of arguments.Args:block_string (str): A string notation of arguments.Examples: 'r1_k3_s11_e1_i32_o16_se0.25_noskip'.Returns:BlockArgs: The namedtuple defined at the top of this file."""assert isinstance(block_string, str)ops = block_string.split('_')options = {}for op in ops:splits = re.split(r'(\d.*)', op)if len(splits) >= 2:key, value = splits[:2]options[key] = value# Check strideassert (('s' in options and len(options['s']) == 1) or(len(options['s']) == 2 and options['s'][0] == options['s'][1]))return BlockArgs(num_repeat=int(options['r']),kernel_size=int(options['k']),stride=[int(options['s'][0])],expand_ratio=int(options['e']),input_filters=int(options['i']),output_filters=int(options['o']),se_ratio=float(options['se']) if 'se' in options else None,id_skip=('noskip' not in block_string))@staticmethoddef _encode_block_string(block):"""Encode a block to a string.Args:block (namedtuple): A BlockArgs type argument.Returns:block_string: A String form of BlockArgs."""args = ['r%d' % block.num_repeat,'k%d' % block.kernel_size,'s%d%d' % (block.strides[0], block.strides[1]),'e%s' % block.expand_ratio,'i%d' % block.input_filters,'o%d' % block.output_filters]if 0 < block.se_ratio <= 1:args.append('se%s' % block.se_ratio)if block.id_skip is False:args.append('noskip')return '_'.join(args)@staticmethoddef decode(string_list):"""Decode a list of string notations to specify blocks inside the network.Args:string_list (list[str]): A list of strings, each string is a notation of block.Returns:blocks_args: A list of BlockArgs namedtuples of block args."""assert isinstance(string_list, list)blocks_args = []for block_string in string_list:blocks_args.append(BlockDecoder._decode_block_string(block_string))return blocks_args@staticmethoddef encode(blocks_args):"""Encode a list of BlockArgs to a list of strings.Args:blocks_args (list[namedtuples]): A list of BlockArgs namedtuples of block args.Returns:block_strings: A list of strings, each string is a notation of block."""block_strings = []for block in blocks_args:block_strings.append(BlockDecoder._encode_block_string(block))return block_stringsdef efficientnet_params(model_name):"""Map EfficientNet model name to parameter coefficients.Args:model_name (str): Model name to be queried.Returns:params_dict[model_name]: A (width,depth,res,dropout) tuple."""params_dict = {# Coefficients:   width,depth,res,dropout'efficientnet-b0': (1.0, 1.0, 224, 0.2),'efficientnet-b1': (1.0, 1.1, 240, 0.2),'efficientnet-b2': (1.1, 1.2, 260, 0.3),'efficientnet-b3': (1.2, 1.4, 300, 0.3),'efficientnet-b4': (1.4, 1.8, 380, 0.4),'efficientnet-b5': (1.6, 2.2, 456, 0.4),'efficientnet-b6': (1.8, 2.6, 528, 0.5),'efficientnet-b7': (2.0, 3.1, 600, 0.5),'efficientnet-b8': (2.2, 3.6, 672, 0.5),'efficientnet-l2': (4.3, 5.3, 800, 0.5),}return params_dict[model_name]def efficientnet(width_coefficient=None, depth_coefficient=None, image_size=None,dropout_rate=0.2, drop_connect_rate=0.2, num_classes=1000, include_top=True):"""Create BlockArgs and GlobalParams for efficientnet model.Args:width_coefficient (float)depth_coefficient (float)image_size (int)dropout_rate (float)drop_connect_rate (float)num_classes (int)Meaning as the name suggests.Returns:blocks_args, global_params."""# Blocks args for the whole model(efficientnet-b0 by default)# It will be modified in the construction of EfficientNet Class according to modelblocks_args = ['r1_k3_s11_e1_i32_o16_se0.25','r2_k3_s22_e6_i16_o24_se0.25','r2_k5_s22_e6_i24_o40_se0.25','r3_k3_s22_e6_i40_o80_se0.25','r3_k5_s11_e6_i80_o112_se0.25','r4_k5_s22_e6_i112_o192_se0.25','r1_k3_s11_e6_i192_o320_se0.25',]blocks_args = BlockDecoder.decode(blocks_args)global_params = GlobalParams(width_coefficient=width_coefficient,depth_coefficient=depth_coefficient,image_size=image_size,dropout_rate=dropout_rate,num_classes=num_classes,batch_norm_momentum=0.99,batch_norm_epsilon=1e-3,drop_connect_rate=drop_connect_rate,depth_divisor=8,min_depth=None,include_top=include_top,)return blocks_args, global_paramsdef get_model_params(model_name, override_params):"""Get the block args and global params for a given model name.Args:model_name (str): Model's name.override_params (dict): A dict to modify global_params.Returns:blocks_args, global_params"""if model_name.startswith('efficientnet'):w, d, s, p = efficientnet_params(model_name)# note: all models have drop connect rate = 0.2blocks_args, global_params = efficientnet(width_coefficient=w, depth_coefficient=d, dropout_rate=p, image_size=s)else:raise NotImplementedError('model name is not pre-defined: {}'.format(model_name))if override_params:# ValueError will be raised here if override_params has fields not included in global_params.global_params = global_params._replace(**override_params)return blocks_args, global_params# train with Standard methods
# check more details in paper(EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks)
url_map = {'efficientnet-b0': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth','efficientnet-b1': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b1-f1951068.pth','efficientnet-b2': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b2-8bb594d6.pth','efficientnet-b3': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b3-5fb5a3c3.pth','efficientnet-b4': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b4-6ed6700e.pth','efficientnet-b5': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b5-b6417697.pth','efficientnet-b6': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b6-c76e70fd.pth','efficientnet-b7': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b7-dcc49843.pth',
}# train with Adversarial Examples(AdvProp)
# check more details in paper(Adversarial Examples Improve Image Recognition)
url_map_advprop = {'efficientnet-b0': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b0-b64d5a18.pth','efficientnet-b1': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b1-0f3ce85a.pth','efficientnet-b2': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b2-6e9d97e5.pth','efficientnet-b3': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b3-cdd7c0f4.pth','efficientnet-b4': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b4-44fb3a87.pth','efficientnet-b5': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b5-86493f6b.pth','efficientnet-b6': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b6-ac80338e.pth','efficientnet-b7': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b7-4652b6dd.pth','efficientnet-b8': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b8-22a8fe65.pth',
}# TODO: add the petrained weights url map of 'efficientnet-l2'def load_pretrained_weights(model, model_name, weights_path=None, load_fc=True, advprop=False, verbose=True):"""Loads pretrained weights from weights path or download using url.Args:model (Module): The whole model of efficientnet.model_name (str): Model name of efficientnet.weights_path (None or str):str: path to pretrained weights file on the local disk.None: use pretrained weights downloaded from the Internet.load_fc (bool): Whether to load pretrained weights for fc layer at the end of the model.advprop (bool): Whether to load pretrained weightstrained with advprop (valid when weights_path is None)."""if isinstance(weights_path, str):state_dict = torch.load(weights_path)else:# AutoAugment or Advprop (different preprocessing)url_map_ = url_map_advprop if advprop else url_mapstate_dict = model_zoo.load_url(url_map_[model_name])if load_fc:ret = model.load_state_dict(state_dict, strict=False)assert not ret.missing_keys, 'Missing keys when loading pretrained weights: {}'.format(ret.missing_keys)else:state_dict.pop('_fc.weight')state_dict.pop('_fc.bias')ret = model.load_state_dict(state_dict, strict=False)assert set(ret.missing_keys) == set(['_fc.weight', '_fc.bias']), 'Missing keys when loading pretrained weights: {}'.format(ret.missing_keys)assert not ret.unexpected_keys, 'Missing keys when loading pretrained weights: {}'.format(ret.unexpected_keys)if verbose:print('Loaded pretrained weights for {}'.format(model_name))VALID_MODELS = ('efficientnet-b0', 'efficientnet-b1', 'efficientnet-b2', 'efficientnet-b3','efficientnet-b4', 'efficientnet-b5', 'efficientnet-b6', 'efficientnet-b7','efficientnet-b8',# Support the construction of 'efficientnet-l2' without pretrained weights'efficientnet-l2'
)class MBConvBlock(nn.Module):"""Mobile Inverted Residual Bottleneck Block.Args:block_args (namedtuple): BlockArgs, defined in utils.py.global_params (namedtuple): GlobalParam, defined in utils.py.image_size (tuple or list): [image_height, image_width].References:[1] https://arxiv.org/abs/1704.04861 (MobileNet v1)[2] https://arxiv.org/abs/1801.04381 (MobileNet v2)[3] https://arxiv.org/abs/1905.02244 (MobileNet v3)"""def __init__(self, block_args, global_params, image_size=None):super().__init__()self._block_args = block_argsself._bn_mom = 1 - global_params.batch_norm_momentum  # pytorch's difference from tensorflowself._bn_eps = global_params.batch_norm_epsilonself.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1)self.id_skip = block_args.id_skip  # whether to use skip connection and drop connect# Expansion phase (Inverted Bottleneck)inp = self._block_args.input_filters  # number of input channelsoup = self._block_args.input_filters * self._block_args.expand_ratio  # number of output channelsif self._block_args.expand_ratio != 1:Conv2d = get_same_padding_conv2d(image_size=image_size)self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False)self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)# image_size = calculate_output_image_size(image_size, 1) <-- this wouldn't modify image_size# Depthwise convolution phasek = self._block_args.kernel_sizes = self._block_args.strideConv2d = get_same_padding_conv2d(image_size=image_size)self._depthwise_conv = Conv2d(in_channels=oup, out_channels=oup, groups=oup,  # groups makes it depthwisekernel_size=k, stride=s, bias=False)self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)image_size = calculate_output_image_size(image_size, s)# Squeeze and Excitation layer, if desiredif self.has_se:Conv2d = get_same_padding_conv2d(image_size=(1, 1))num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio))self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)# Pointwise convolution phasefinal_oup = self._block_args.output_filtersConv2d = get_same_padding_conv2d(image_size=image_size)self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps)self._swish = MemoryEfficientSwish()def forward(self, inputs, drop_connect_rate=None):"""MBConvBlock's forward function.Args:inputs (tensor): Input tensor.drop_connect_rate (bool): Drop connect rate (float, between 0 and 1).Returns:Output of this block after processing."""# Expansion and Depthwise Convolutionx = inputsif self._block_args.expand_ratio != 1:x = self._expand_conv(inputs)x = self._bn0(x)x = self._swish(x)x = self._depthwise_conv(x)x = self._bn1(x)x = self._swish(x)# Squeeze and Excitationif self.has_se:x_squeezed = F.adaptive_avg_pool2d(x, 1)x_squeezed = self._se_reduce(x_squeezed)x_squeezed = self._swish(x_squeezed)x_squeezed = self._se_expand(x_squeezed)x = torch.sigmoid(x_squeezed) * x# Pointwise Convolutionx = self._project_conv(x)x = self._bn2(x)# Skip connection and drop connectinput_filters, output_filters = self._block_args.input_filters, self._block_args.output_filtersif self.id_skip and self._block_args.stride == 1 and input_filters == output_filters:# The combination of skip connection and drop connect brings about stochastic depth.if drop_connect_rate:x = drop_connect(x, p=drop_connect_rate, training=self.training)x = x + inputs  # skip connectionreturn xdef set_swish(self, memory_efficient=True):"""Sets swish function as memory efficient (for training) or standard (for export).Args:memory_efficient (bool): Whether to use memory-efficient version of swish."""self._swish = MemoryEfficientSwish() if memory_efficient else Swish()class EfficientNet(nn.Module):def __init__(self, blocks_args=None, global_params=None):super().__init__()assert isinstance(blocks_args, list), 'blocks_args should be a list'assert len(blocks_args) > 0, 'block args must be greater than 0'self._global_params = global_paramsself._blocks_args = blocks_args# Batch norm parametersbn_mom = 1 - self._global_params.batch_norm_momentumbn_eps = self._global_params.batch_norm_epsilon# Get stem static or dynamic convolution depending on image sizeimage_size = global_params.image_sizeConv2d = get_same_padding_conv2d(image_size=image_size)# Stemin_channels = 3  # rgbout_channels = round_filters(32, self._global_params)  # number of output channelsself._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)image_size = calculate_output_image_size(image_size, 2)# Build blocksself._blocks = nn.ModuleList([])for block_args in self._blocks_args:# Update block input and output filters based on depth multiplier.block_args = block_args._replace(input_filters=round_filters(block_args.input_filters, self._global_params),output_filters=round_filters(block_args.output_filters, self._global_params),num_repeat=round_repeats(block_args.num_repeat, self._global_params))# The first block needs to take care of stride and filter size increase.self._blocks.append(MBConvBlock(block_args, self._global_params, image_size=image_size))image_size = calculate_output_image_size(image_size, block_args.stride)if block_args.num_repeat > 1:  # modify block_args to keep same output sizeblock_args = block_args._replace(input_filters=block_args.output_filters, stride=1)for _ in range(block_args.num_repeat - 1):self._blocks.append(MBConvBlock(block_args, self._global_params, image_size=image_size))# image_size = calculate_output_image_size(image_size, block_args.stride)  # stride = 1# Headin_channels = block_args.output_filters  # output of final blockout_channels = round_filters(1280, self._global_params)Conv2d = get_same_padding_conv2d(image_size=image_size)self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False)self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)# Final linear layerself._avg_pooling = nn.AdaptiveAvgPool2d(1)if self._global_params.include_top:self._dropout = nn.Dropout(self._global_params.dropout_rate)self._fc = nn.Linear(out_channels, self._global_params.num_classes)# set activation to memory efficient swish by defaultself._swish = MemoryEfficientSwish()self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]def set_swish(self, memory_efficient=True):"""Sets swish function as memory efficient (for training) or standard (for export).Args:memory_efficient (bool): Whether to use memory-efficient version of swish."""self._swish = MemoryEfficientSwish() if memory_efficient else Swish()for block in self._blocks:block.set_swish(memory_efficient)def extract_endpoints(self, inputs):# """Use convolution layer to extract features# from reduction levels i in [1, 2, 3, 4, 5].## Args:#     inputs (tensor): Input tensor.## Returns:#     Dictionary of last intermediate features#     with reduction levels i in [1, 2, 3, 4, 5].#     Example:#         >>> import torch#         >>> from efficientnet.model import EfficientNet#         >>> inputs = torch.rand(1, 3, 224, 224)#         >>> model = EfficientNet.from_pretrained('efficientnet-b0')#         >>> endpoints = model.extract_endpoints(inputs)#         >>> print(endpoints['reduction_1'].shape)  # torch.Size([1, 16, 112, 112])#         >>> print(endpoints['reduction_2'].shape)  # torch.Size([1, 24, 56, 56])#         >>> print(endpoints['reduction_3'].shape)  # torch.Size([1, 40, 28, 28])#         >>> print(endpoints['reduction_4'].shape)  # torch.Size([1, 112, 14, 14])#         >>> print(endpoints['reduction_5'].shape)  # torch.Size([1, 320, 7, 7])#         >>> print(endpoints['reduction_6'].shape)  # torch.Size([1, 1280, 7, 7])# """endpoints = dict()# Stemx = self._swish(self._bn0(self._conv_stem(inputs)))prev_x = x# Blocksfor idx, block in enumerate(self._blocks):drop_connect_rate = self._global_params.drop_connect_rateif drop_connect_rate:drop_connect_rate *= float(idx) / len(self._blocks)  # scale drop connect_ratex = block(x, drop_connect_rate=drop_connect_rate)if prev_x.size(2) > x.size(2):endpoints['reduction_{}'.format(len(endpoints) + 1)] = prev_xelif idx == len(self._blocks) - 1:endpoints['reduction_{}'.format(len(endpoints) + 1)] = xprev_x = x# Headx = self._swish(self._bn1(self._conv_head(x)))endpoints['reduction_{}'.format(len(endpoints) + 1)] = xreturn endpointsdef forward(self, inputs):"""use convolution layer to extract feature .Args:inputs (tensor): Input tensor.Returns:Output of the final convolutionlayer in the efficientnet model."""# Stemx = self._swish(self._bn0(self._conv_stem(inputs)))unique_tensors = {}# Blocksfor idx, block in enumerate(self._blocks):drop_connect_rate = self._global_params.drop_connect_rateif drop_connect_rate:drop_connect_rate *= float(idx) / len(self._blocks)  # scale drop connect_ratex = block(x, drop_connect_rate=drop_connect_rate)width, height = x.shape[2], x.shape[3]unique_tensors[(width, height)] = xresult_list = list(unique_tensors.values())[-4:]# Headreturn result_list@classmethoddef from_name(cls, model_name, in_channels=3, **override_params):"""Create an efficientnet model according to name.Args:model_name (str): Name for efficientnet.in_channels (int): Input data's channel number.override_params (other key word params):Params to override model's global_params.Optional key:'width_coefficient', 'depth_coefficient','image_size', 'dropout_rate','num_classes', 'batch_norm_momentum','batch_norm_epsilon', 'drop_connect_rate','depth_divisor', 'min_depth'Returns:An efficientnet model."""cls._check_model_name_is_valid(model_name)blocks_args, global_params = get_model_params(model_name, override_params)model = cls(blocks_args, global_params)model._change_in_channels(in_channels)return model@classmethoddef from_pretrained(cls, model_name, weights_path=None, advprop=False,in_channels=3, num_classes=1000, **override_params):"""Create an efficientnet model according to name.Args:model_name (str): Name for efficientnet.weights_path (None or str):str: path to pretrained weights file on the local disk.None: use pretrained weights downloaded from the Internet.advprop (bool):Whether to load pretrained weightstrained with advprop (valid when weights_path is None).in_channels (int): Input data's channel number.num_classes (int):Number of categories for classification.It controls the output size for final linear layer.override_params (other key word params):Params to override model's global_params.Optional key:'width_coefficient', 'depth_coefficient','image_size', 'dropout_rate','batch_norm_momentum','batch_norm_epsilon', 'drop_connect_rate','depth_divisor', 'min_depth'Returns:A pretrained efficientnet model."""model = cls.from_name(model_name, num_classes=num_classes, **override_params)load_pretrained_weights(model, model_name, weights_path=weights_path,load_fc=(num_classes == 1000), advprop=advprop)model._change_in_channels(in_channels)return model@classmethoddef get_image_size(cls, model_name):"""Get the input image size for a given efficientnet model.Args:model_name (str): Name for efficientnet.Returns:Input image size (resolution)."""cls._check_model_name_is_valid(model_name)_, _, res, _ = efficientnet_params(model_name)return res@classmethoddef _check_model_name_is_valid(cls, model_name):"""Validates model name.Args:model_name (str): Name for efficientnet.Returns:bool: Is a valid name or not."""if model_name not in VALID_MODELS:raise ValueError('model_name should be one of: ' + ', '.join(VALID_MODELS))def _change_in_channels(self, in_channels):"""Adjust model's first convolution layer to in_channels, if in_channels not equals 3.Args:in_channels (int): Input data's channel number."""if in_channels != 3:Conv2d = get_same_padding_conv2d(image_size=self._global_params.image_size)out_channels = round_filters(32, self._global_params)self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)def efficient(model_name='efficientnet-b0', pretrained=False):if pretrained:model = EfficientNet.from_pretrained('{}'.format(model_name))else:model = EfficientNet.from_name('{}'.format(model_name))return modelif __name__ == "__main__":# VALID_MODELS = (#     'efficientnet-b0', 'efficientnet-b1', 'efficientnet-b2', 'efficientnet-b3',#     'efficientnet-b4', 'efficientnet-b5', 'efficientnet-b6', 'efficientnet-b7',#     'efficientnet-b8',#     # Support the construction of 'efficientnet-l2' without pretrained weights#     'efficientnet-l2'# )# Generating Sample imageimage_size = (1, 3, 640, 640)image = torch.rand(*image_size)# Modelmodel = efficient('efficientnet-b0')out = model(image)print(len(out))

四、手把手教你添加EfficientNetV1机制

这个主干的网络结构添加起来算是所有的改进机制里最麻烦的了,因为有一些网略结构可以用yaml文件搭建出来,有一些网络结构其中的一些细节根本没有办法用yaml文件去搭建,用yaml文件去搭建会损失一些细节部分(而且一个网络结构设计很多细节的结构修改方式都不一样,一个一个去修改大家难免会出错),所以这里让网络直接返回整个网络,然后修改部分 yolo代码以后就都以这种形式添加了,以后我提出的网络模型基本上都会通过这种方式修改,我也会进行一些模型细节改进。创新出新的网络结构大家直接拿来用就可以的。下面开始添加教程->

(同时每一个后面都有代码,大家拿来复制粘贴替换即可,但是要看好了不要复制粘贴替换多了)


修改一

我们复制网络结构代码到“ultralytics/nn/modules”目录下创建一个py文件复制粘贴进去 ,我这里起的名字是EfficientNetV1


修改二

找到如下的文件"ultralytics/nn/tasks.py" 在开始的部分导入我们的模型如下图。

from .modules.EfficientV1 import efficient


修改三 

添加如下两行代码!!!

​​


修改四

找到七百多行大概把具体看图片,按照图片来修改就行,添加红框内的部分,注意没有()只是函数名,我这里只添加了部分的版本,大家有兴趣这个EfficientNetV1还有更多的版本可以添加,看我给的代码函数头即可。

        elif m in {自行添加对应的模型即可,下面都是一样的}:m = m()c2 = m.width_list  # 返回通道列表backbone = True


修改五 

下面的两个红框内都是需要改动的。 

​​

        if isinstance(c2, list):m_ = mm_.backbone = Trueelse:m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # modulet = str(m)[8:-2].replace('__main__.', '')  # module typem.np = sum(x.numel() for x in m_.parameters())  # number paramsm_.i, m_.f, m_.type = i + 4 if backbone else i, f, t  # attach index, 'from' index, type


修改六 

如下的也需要修改,全部按照我的来。

​​

代码如下把原先的代码替换了即可。 

        if verbose:LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # printsave.extend(x % (i + 4 if backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelistlayers.append(m_)if i == 0:ch = []if isinstance(c2, list):ch.extend(c2)if len(c2) != 5:ch.insert(0, 0)else:ch.append(c2)


修改七

修改七和前面的都不太一样,需要修改前向传播中的一个部分, 已经离开了parse_model方法了。

可以在图片中开代码行数,没有离开task.py文件都是同一个文件。 同时这个部分有好几个前向传播都很相似,大家不要看错了,是70多行左右的!!!,同时我后面提供了代码,大家直接复制粘贴即可,有时间我针对这里会出一个视频。

​​

代码如下->

    def _predict_once(self, x, profile=False, visualize=False):"""Perform a forward pass through the network.Args:x (torch.Tensor): The input tensor to the model.profile (bool):  Print the computation time of each layer if True, defaults to False.visualize (bool): Save the feature maps of the model if True, defaults to False.Returns:(torch.Tensor): The last output of the model."""y, dt = [], []  # outputsfor m in self.model:if m.f != -1:  # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layersif profile:self._profile_one_layer(m, x, dt)if hasattr(m, 'backbone'):x = m(x)if len(x) != 5: # 0 - 5x.insert(0, None)for index, i in enumerate(x):if index in self.save:y.append(i)else:y.append(None)x = x[-1] # 最后一个输出传给下一层else:x = m(x)  # runy.append(x if m.i in self.save else None)  # save outputif visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)return x

到这里就完成了修改部分,但是这里面细节很多,大家千万要注意不要替换多余的代码,导致报错,也不要拉下任何一部,都会导致运行失败,而且报错很难排查!!!很难排查!!! 


修改八

我们找到如下文件'ultralytics/utils/torch_utils.py'按照如下的图片进行修改,否则容易打印不出来计算量。

​​

五、EfficientNetV1的yaml文件

复制如下yaml文件进行运行!!! 

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOP# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, efficient, []]  # 4- [-1, 1, SPPF, [1024, 5]]  # 5# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 6- [[-1, 3], 1, Concat, [1]]  # 7 cat backbone P4- [-1, 3, C2f, [512]]  # 8- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 9- [[-1, 2], 1, Concat, [1]]  # 10 cat backbone P3- [-1, 3, C2f, [256]]  # 11 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]] # 12- [[-1, 8], 1, Concat, [1]]  # 13 cat head P4- [-1, 3, C2f, [512]]  # 14 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]] # 15- [[-1, 5], 1, Concat, [1]]  # 16 cat head P5- [-1, 3, C2f, [1024]]  # 17 (P5/32-large)- [[11, 14, 17], 1, Detect, [nc]]  # Detect(P3, P4, P5)


六、成功运行记录 

下面是成功运行的截图,已经完成了有1个epochs的训练,图片太大截不全第2个epochs了。 


七、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/226973.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mac安装k8s环境

安装kubectl brew install kubectl 确认一下安装的版本 kubectl version --client 如果想在本地运行kubernetes 需要安装minikube brew install minikube 需要注意安装minikube需要本地的docker服务是启动的 启动 默认连接的是google的仓库 minikube start 指定阿…

HTML实战演练之贪吃蛇美食大作战

导入&#xff1a; 一 &#xff1a;粉丝要求 今天一位小伙伴私信我说&#xff0c;想玩HTML贪吃蛇美食大作战&#xff0c;自己也是学HTML的&#xff0c;希望我能安排一下&#xff0c;那么好它来了 需知&#xff1a; 一&#xff1a;别着急先看需要知道的 要用HTML开发贪吃蛇美食…

【Java中序列化的原理是什么(解析)】

&#x1f341;序列化的原理是什么&#xff1f; &#x1f341;典型-----解析&#x1f341;拓展知识仓&#x1f341;Serializable 和 Externalizable 接门有何不同? &#x1f341;如果序列化后的文件或者原始类被篡改&#xff0c;还能被反序列化吗?&#x1f341;serialVersionU…

【机组期末速成】指令系统|机器指令概述|操作数类型与操作类型|寻址方式|指令格式

&#x1f3a5; 个人主页&#xff1a;深鱼~&#x1f525;收录专栏&#xff1a;计算机组成原理&#x1f304;欢迎 &#x1f44d;点赞✍评论⭐收藏 目录 前言&#xff1a; 一、本章考点总览 二、考点分析 1、以下有关指令系统的说法中错误的是&#xff08; &#xff09;。 2…

直方图与均衡化

直方图 统计图像中相同像素点的数量。 使用cv2.calcHist(images, channels, mask, histSize, ranges)函数 images&#xff1a;原图像图像格式为uint8或float32&#xff0c;当传入函数时应用[]括起来&#xff0c;例如[img]。 channels&#xff1a;同样用中括号括起来&#xff…

2011年AMC8数学竞赛中英文真题典型考题、考点分析和答案解析

今天是2023年12月30日&#xff0c;距离2024年元旦新年还有2天时间&#xff0c;先预祝所有的读者和小读者想今年工作、学习进步&#xff01;幸福平安&#xff01; 今天距离2024年1月19日的AMC8正式比赛只有20天的时间&#xff0c;我们继续来看AMC8竞赛的历年真题典型考题和解析…

Android笔记(二十二):Paging3分页加载库结合Compose的实现网络单一数据源访问

Paging3 组件是谷歌公司推出的分页加载库。个人认为Paging3库是非常强大&#xff0c;但是学习难点比较大的一个库。Paging3组件可用于加载和显示来自本地存储或网络中更大的数据集中的数据页面。此方法可让移动应用更高效地利用网络带宽和系统资源。在具体实现上&#xff0c;Pa…

根据文法求对应的语言

技巧&#xff1a;最后得到的是终结符组成的闭包 例题&#xff1a; 文法G[S]: S-->AB A-->aAb|ab B-->Bc|&#xff0c;求对应的语言 ①S-->(aAb|ab)(Bc|) ②我们可以观察到&#xff0c;无论A-->aAb还是A-->ab&#xff0c;都一定会同时出现ab,…

PiflowX组件-WriteToKafka

WriteToKafka组件 组件说明 将数据写入kafka。 计算引擎 flink 有界性 Streaming Append Mode 组件分组 kafka 端口 Inport&#xff1a;默认端口 outport&#xff1a;默认端口 组件属性 名称展示名称默认值允许值是否必填描述例子kafka_hostKAFKA_HOST“”无是逗号…

使用Halcon 采集图像并进行简单处理rgbl_to_gray/threshold/connection/fill_up

使用Halcon 采集图像并进行简单处理 文章目录 使用Halcon 采集图像并进行简单处理 下面介绍一个简单的采集图像的例子。在Halcon中利用图像采集接口&#xff0c;使用USB3.0相机实时拍摄图像。采集到图像后对图像进行简单的阀值分割处理&#xff0c;将有物体的区域标记出来。 &a…

抬头举手阅读YOLOV8NANO

首先用YOLOV8NANO得到PT模型&#xff0c;转换成ONNX,OPENCV调用&#xff0c;PYTHON,C,ANDROID都可以举手写字阅读YOLOV8NANO

基于Freeswitch实现的Volte网视频通知应用

现在运营商的Volte网络已经很好的支持视频通话了&#xff0c;因此在原来的电话语音通知的基础上&#xff0c;可以更进一步实现视频的通知&#xff0c;让用户有更好的体验&#xff0c;本文就从技术角度&#xff0c;基于Freeswitch来实现此类应用&#xff08;本文假设读者已对Fre…

Redis哨兵

1.哨兵介绍 1.1.为何需要哨兵&#xff1f; 为了解决master节点宕机问题&#xff0c;选举salve节点为新的master节点。 1.2.哨兵的作用 1.3.服务状态监控 1.4.选举新的master 1.5.如何实现故障转移 2.搭建哨兵集群 2.1.集群结构 这里我们搭建一个三节点形成的Sentinel集群&…

蓝桥杯-Excel地址[Java]

目录&#xff1a; 学习目标&#xff1a; 学习内容&#xff1a; 学习时间&#xff1a; 题目&#xff1a; 题目描述: 输入描述: 输出描述: 输入输出样例: 示例 1: 运行限制: 题解: 思路: 学习目标&#xff1a; 刷蓝桥杯题库日记 学习内容&#xff1a; 编号96题目Ex…

re:Invent 2023技术上新|Amazon DynamoDB与OpenSearch Service的Zero-ETL集成

Amazon DynamoDB 与 Amazon OpenSearch Service 的 Zero-ETL 集成已正式上线&#xff0c;该服务允许您通过自动复制和转换您的 DynamoDB 数据来搜索数据&#xff0c;而无需自定义代码或基础设施。这种 Zero-ETL 集成减少了运营负担和成本&#xff0c;使您能够专注于应用程序。这…

php获取访客IP、UA、操作系统、浏览器等信息

最近有个需求就是获取下本地的ip地址、网上搜索了相关的教程&#xff0c;总结一下分享给大家、有需要的小伙伴可以参考一下 一、简单的获取 User Agent 信息代码: echo $_SERVER[HTTP_USER_AGENT]; 二、获取访客操作系统信息: /** * 获取客户端操作系统信息,包括win10 * pa…

Adobe 设计精髓:创新的用户体验 | 开源日报 No.130

adobe/react-spectrum Stars: 10.1k License: Apache-2.0 React Spectrum Libraries 是一系列的库和工具&#xff0c;旨在帮助开发者构建适应性强、可访问性好且稳健的用户体验。 核心优势&#xff1a; 提供全面的可访问性和行为支持&#xff0c;符合 WAI-ARIA 编写实践&…

Transformer(seq2seq、self-attention)学习笔记

在self-attention 基础上记录一篇Transformer学习笔记 Transformer的网络结构EncoderDecoder 模型训练与评估 Transformer的网络结构 Transformer是一种seq2seq 模型。输入一个序列&#xff0c;经过encoder、decoder输出结果也是一个序列&#xff0c;输出序列的长度由模型决定…

redis cluster判断key属于那个分片。

一、判断阿里云 redis cluster&#xff0c;的key属于那个分片。 阿里云特有的命令info key 可以查看key属于那个slot&#xff0c;那个分片 命令行查看&#xff1a; xxxx:6379> info key xxxx_compressed_xxx slot:4941 node_index:9 xxxx:6379> cluster keyslot xxxx_…

基于 Webpack 插件体系的 Mock 服务

背景 在软件研发流程中&#xff0c;对于前后端分离的架构体系而言&#xff0c;为了能够更快速、高效的实现功能的开发&#xff0c;研发团队通常来说会在产品原型阶段对前后端联调的数据接口进行结构设计及约定&#xff0c;进而可以分别同步进行对应功能的实现&#xff0c;提升研…