中间件系列 - Redis入门到实战(高级篇-分布式缓存)

前言

  1. 学习视频: 黑马程序员Redis入门到实战教程,深度透析redis底层原理+redis分布式锁+企业解决方案+黑马点评实战项目

  2. 中间件系列 - Redis入门到实战

  3. 本内容仅用于个人学习笔记,如有侵扰,联系删除

  4. 学习目标

    • Redis持久化
    • Redis主从
    • Redis哨兵
    • Redis分片集群

一 分布式缓存

- 基于Redis集群解决单机Redis存在的问题

单机的Redis存在四大问题:

在这里插入图片描述

1.Redis持久化

Redis有两种持久化方案:

  • RDB持久化
  • AOF持久化

1.1.RDB持久化

RDB全称Redis Database Backup fileRedis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。快照文件称为RDB文件,默认是保存在当前运行目录。

1.1.1.执行时机

RDB持久化在四种情况下会执行:

  • 执行save命令
  • 执行bgsave命令
  • Redis停机时
  • 触发RDB条件时

1)save命令

执行下面的命令,可以立即执行一次RDB:
在这里插入图片描述
save命令会导致主进程执行RDB,这个过程中其它所有命令都会被阻塞。只有在数据迁移时可能用到。

2)bgsave命令

下面的命令可以异步执行RDB:
在这里插入图片描述

这个命令执行后会开启独立进程完成RDB,主进程可以持续处理用户请求,不受影响。

3)停机时

Redis停机时会执行一次save命令,实现RDB持久化。

4)触发RDB条件

Redis内部有触发RDB的机制,可以在redis.conf文件中找到,格式如下:

# 900秒内,如果至少有1个key被修改,则执行bgsave , 如果是save "" 则表示禁用RDB
save 900 1  
save 300 10  
save 60 10000 

RDB的其它配置也可以在redis.conf文件中设置:

# 是否压缩 ,建议不开启,压缩也会消耗cpu,磁盘的话不值钱
rdbcompression yes# RDB文件名称
dbfilename dump.rdb  # 文件保存的路径目录
dir ./ 

1.1.2.RDB原理

bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。

fork采用的是copy-on-write技术:

  • 当主进程执行读操作时,访问共享内存;
  • 当主进程执行写操作时,则会拷贝一份数据,执行写操作。

在这里插入图片描述

1.1.3.小结

RDB方式bgsave的基本流程?

  • fork主进程得到一个子进程,共享内存空间
  • 子进程读取内存数据并写入新的RDB文件
  • 用新RDB文件替换旧的RDB文件

RDB会在什么时候执行?save 60 1000代表什么含义?

  • 默认是服务停止时
  • 代表60秒内至少执行1000次修改则触发RDB

RDB的缺点?

  • RDB执行间隔时间长,两次RDB之间写入数据有丢失的风险
  • fork子进程、压缩、写出RDB文件都比较耗时

1.2 AOF持久化

1.2.1 AOF原理

AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。
在这里插入图片描述

1.2.2 AOF配置

AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF

# 是否开启AOF功能,默认是no
appendonly yes
# AOF文件的名称
appendfilename "appendonly.aof"

AOF的命令记录的频率也可以通过redis.conf文件来配:

# 表示每执行一次写命令,立即记录到AOF文件
appendfsync always 
# 写命令执行完先放入AOF缓冲区,然后表示每隔1秒将缓冲区数据写到AOF文件,是默认方案
appendfsync everysec 
# 写命令执行完先放入AOF缓冲区,由操作系统决定何时将缓冲区内容写回磁盘
appendfsync no

三种策略对比:
在这里插入图片描述

1.2.3 AOF文件重写

因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。
在这里插入图片描述
如图,AOF原本有三个命令,但是set num 123 和 set num 666都是对num的操作,第二次会覆盖第一次的值,因此第一个命令记录下来没有意义。

所以重写命令后,AOF文件内容就是:mset name jack num 666

Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:

# AOF文件比上次文件 增长超过多少百分比则触发重写
auto-aof-rewrite-percentage 100
# AOF文件体积最小多大以上才触发重写 
auto-aof-rewrite-min-size 64mb 

1.3 RDB与AOF对比

RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。
在这里插入图片描述

2 Redis主从

2.1 Redis主从集群

2.1.1 搭建主从架构

单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。

我们搭建的主从集群结构如图:
在这里插入图片描述
共包含三个节点,一个主节点,两个从节点。

这里我们会在同一台虚拟机中开启3个redis实例,模拟主从集群,信息如下:

IPPORT角色
192.168.150.1017001master
192.168.150.1017002slave
192.168.150.1017003slave

2.1.2 准备实例和配置

要在同一台虚拟机开启3个实例,必须准备三份不同的配置文件和目录,配置文件所在目录也就是工作目录。

1)创建目录

我们创建三个文件夹,名字分别叫7001、7002、7003:

# 进入/tmp目录
cd /tmp
# 创建目录
mkdir 7001 7002 7003

如图:
在这里插入图片描述

2)恢复原始配置

修改redis-6.2.4/redis.conf文件,将其中的持久化模式改为默认的RDB模式,AOF保持关闭状态。

# 开启RDB
# save ""
save 3600 1
save 300 100
save 60 10000# 关闭AOF
appendonly no

3)拷贝配置文件到每个实例目录

然后将redis-6.2.4/redis.conf文件拷贝到三个目录中(在/tmp目录执行下列命令):

# 方式一:逐个拷贝
cp redis-6.2.4/redis.conf 7001
cp redis-6.2.4/redis.conf 7002
cp redis-6.2.4/redis.conf 7003# 方式二:管道组合命令,一键拷贝
echo 7001 7002 7003 | xargs -t -n 1 cp redis-6.2.4/redis.conf

4)修改每个实例的端口、工作目录

修改每个文件夹内的配置文件,将端口分别修改为7001、7002、7003,将rdb文件保存位置都修改为自己所在目录(在/tmp目录执行下列命令):

sed -i -e 's/6379/7001/g' -e 's/dir .\//dir \/tmp\/7001\//g' 7001/redis.conf
sed -i -e 's/6379/7002/g' -e 's/dir .\//dir \/tmp\/7002\//g' 7002/redis.conf
sed -i -e 's/6379/7003/g' -e 's/dir .\//dir \/tmp\/7003\//g' 7003/redis.conf

5)修改每个实例的声明IP

虚拟机本身有多个IP,为了避免将来混乱,我们需要在redis.conf文件中指定每一个实例的绑定ip信息,格式如下:

# redis实例的声明 IP
replica-announce-ip 192.168.150.101

每个目录都要改,我们一键完成修改(在/tmp目录执行下列命令):

# 逐一执行
sed -i '1a replica-announce-ip 192.168.150.101' 7001/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7002/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7003/redis.conf# 或者一键修改
printf '%s\n' 7001 7002 7003 | xargs -I{} -t sed -i '1a replica-announce-ip 192.168.150.101' {}/redis.conf

2.1.3 启动

为了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:

# 第1个
redis-server 7001/redis.conf
# 第2个
redis-server 7002/redis.conf
# 第3个
redis-server 7003/redis.conf

启动后:
在这里插入图片描述
如果要一键停止,可以运行下面命令:

printf '%s\n' 7001 7002 7003 | xargs -I{} -t redis-cli -p {} shutdown

2.1.4 开启主从关系

现在三个实例还没有任何关系,要配置主从可以使用replicaof 或者slaveof(5.0以前)命令。

有临时和永久两种模式:

  • 修改配置文件(永久生效)

    • 在redis.conf中添加一行配置:slaveof <masterip> <masterport>
  • 使用redis-cli客户端连接到redis服务,执行slaveof命令(重启后失效):

    slaveof <masterip> <masterport>
    

注意:在5.0以后新增命令replicaof,与salveof效果一致。

这里我们为了演示方便,使用方式二。

通过redis-cli命令连接7002,执行下面命令:

# 连接 7002
redis-cli -p 7002
# 执行slaveof
slaveof 192.168.150.101 7001

通过redis-cli命令连接7003,执行下面命令:

# 连接 7003
redis-cli -p 7003
# 执行slaveof
slaveof 192.168.150.101 7001

然后连接 7001节点,查看集群状态:

# 连接 7001
redis-cli -p 7001
# 查看状态
info replication

结果:
在这里插入图片描述

2.1.5 测试

执行下列操作以测试:

  • 利用redis-cli连接7001,执行set num 123

  • 利用redis-cli连接7002,执行get num,再执行set num 666

  • 利用redis-cli连接7003,执行get num,再执行set num 888

127.0.0.1:7001> set num 123
OK
127.0.0.1:7001> get num
"123"
127.0.0.1:7001> get num
[root@VM-16-14-centos tmp]# redis-cli -p 7002
127.0.0.1:7002> get num
"123"
127.0.0.1:7002> set num 666
(error) READONLY You can't write against a read only replica.
127.0.0.1:7002>
[root@VM-16-14-centos tmp]# redis-cli -p 7003
127.0.0.1:7003> get num
"123"
127.0.0.1:7003> set num 666
(error) READONLY You can't write against a read only replica.
127.0.0.1:7003>

可以发现,只有在7001这个master节点上可以执行写操作,7002和7003这两个slave节点只能执行读操作。

2.2.主从数据同步原理

2.2.1 全量同步

主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给slave节点,流程:
在这里插入图片描述
这里有一个问题,master如何得知salve是第一次来连接呢??

有几个概念,可以作为判断依据:

  • Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid
  • offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。

因此slave做数据同步,必须向master声明自己的replication id 和offset,master才可以判断到底需要同步哪些数据。

因为slave原本也是一个master,有自己的replid和offset,当第一次变成slave,与master建立连接时,发送的replid和offset是自己的replid和offset。

master判断发现slave发送来的replid与自己的不一致,说明这是一个全新的slave,就知道要做全量同步了。

master会将自己的replid和offset都发送给这个slave,slave保存这些信息。以后slave的replid就与master一致了。

因此,master判断一个节点是否是第一次同步的依据,就是看replid是否一致

如图:
在这里插入图片描述
完整流程描述:

  • slave节点请求增量同步
  • master节点判断replid,发现不一致,拒绝增量同步
  • master将完整内存数据生成RDB,发送RDB到slave
  • slave清空本地数据,加载master的RDB
  • master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave
  • slave执行接收到的命令,保持与master之间的同步

2.2.2.增量同步

全量同步需要先做RDB,然后将RDB文件通过网络传输个slave,成本太高了。因此除了第一次做全量同步,其它大多数时候slave与master都是做增量同步

什么是增量同步?就是只更新slave与master存在差异的部分数据。如图:
在这里插入图片描述
那么master怎么知道slave与自己的数据差异在哪里呢?

2.2.3 repl_backlog原理

master怎么知道slave与自己的数据差异在哪里呢?

这就要说到全量同步时的repl_baklog文件了。

这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖。

repl_baklog中会记录Redis处理过的命令日志及offset,包括master当前的offset,和slave已经拷贝到的offset:
在这里插入图片描述

slave与master的offset之间的差异,就是salve需要增量拷贝的数据了。

随着不断有数据写入,master的offset逐渐变大,slave也不断的拷贝,追赶master的offset:
在这里插入图片描述

直到数组被填满:
在这里插入图片描述

此时,如果有新的数据写入,就会覆盖数组中的旧数据。不过,旧的数据只要是绿色的,说明是已经被同步到slave的数据,即便被覆盖了也没什么影响。因为未同步的仅仅是红色部分。

但是,如果slave出现网络阻塞,导致master的offset远远超过了slave的offset:
在这里插入图片描述

如果master继续写入新数据,其offset就会覆盖旧的数据,直到将slave现在的offset也覆盖:
在这里插入图片描述

棕色框中的红色部分,就是尚未同步,但是却已经被覆盖的数据。此时如果slave恢复,需要同步,却发现自己的offset都没有了,无法完成增量同步了。只能做全量同步。
在这里插入图片描述

2.3 主从同步优化

主从同步可以保证主从数据的一致性,非常重要。

可以从以下几个方面来优化Redis主从就集群:

  • master中配置repl-diskless-sync yes启用无磁盘复制,避免全量同步时的磁盘IO。
  • Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO
  • 适当提高repl_baklog的大小,发现slave宕机时尽快实现故障恢复,尽可能避免全量同步
  • 限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力

主从从架构图:
在这里插入图片描述

2.4.小结

简述全量同步和增量同步区别?

  • 全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。
  • 增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave

什么时候执行全量同步?

  • slave节点第一次连接master节点时
  • slave节点断开时间太久,repl_baklog中的offset已经被覆盖时

什么时候执行增量同步?

  • slave节点断开又恢复,并且在repl_baklog中能找到offset时

3 Redis哨兵

Redis提供了哨兵(Sentinel)机制来实现主从集群的自动故障恢复。

3.1.哨兵原理

3.1.1.集群结构和作用

哨兵的结构如图:
在这里插入图片描述
哨兵的作用如下:

  • 监控Sentinel 会不断检查您的masterslave是否按预期工作
  • 自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主
  • 通知Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端

3.1.2.集群监控原理

Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:

主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线

客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线quorum值最好超过Sentinel实例数量的一半。

在这里插入图片描述

3.1.3 集群故障恢复原理

一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:

  • 首先会判断slave节点与master节点断开时间长短,如果超过指定值(down-after-milliseconds * 10)则会排除该slave节点
  • 然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举
  • 如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高
  • 最后是判断slave节点的运行id大小,越小优先级越高。

当选出一个新的master后,该如何实现切换呢?

流程如下:

  • sentinel给备选的slave1节点发送slaveof no one命令,让该节点成为master
  • sentinel给所有其它slave发送slaveof 192.168.150.101 7002 命令,让这些slave成为新master的从节点,开始从新的master上同步数据。
  • 最后,sentinel将故障节点标记为slave,当故障节点恢复后会自动成为新的master的slave节点

在这里插入图片描述

3.1.4 小结

Sentinel的三个作用是什么?

  • 监控
  • 故障转移
  • 通知

Sentinel如何判断一个redis实例是否健康?

  • 每隔1秒发送一次ping命令,如果超过一定时间没有相向则认为是主观下线
  • 如果大多数sentinel都认为实例主观下线,则判定服务下线

故障转移步骤有哪些?

  • 首先选定一个slave作为新的master,执行slaveof no one
  • 然后让所有节点都执行slaveof 新master
  • 修改故障节点配置,添加slaveof 新master

3.2 搭建哨兵集群

3.2.1 集群结构

这里我们搭建一个三节点形成的Sentinel集群,来监管之前的Redis主从集群。如图:
在这里插入图片描述

三个sentinel实例信息如下:

节点IPPORT
s1192.168.150.10127001
s2192.168.150.10127002
s3192.168.150.10127003

3.2.2 准备实例和配置

要在同一台虚拟机开启3个实例,必须准备三份不同的配置文件和目录,配置文件所在目录也就是工作目录。

我们创建三个文件夹,名字分别叫s1、s2、s3:

# 进入/tmp目录
cd /tmp
# 创建目录
mkdir s1 s2 s3

如图:
在这里插入图片描述

然后我们在s1目录创建一个sentinel.conf文件,添加下面的内容:

port 27001
sentinel announce-ip 192.168.150.101
sentinel monitor mymaster 192.168.150.101 7001 2
sentinel down-after-milliseconds mymaster 5000
sentinel failover-timeout mymaster 60000
dir "/tmp/s1"

解读:

  • port 27001:是当前sentinel实例的端口
  • sentinel monitor mymaster 192.168.150.101 7001 2:指定主节点信息
    • mymaster:主节点名称,自定义,任意写
    • 192.168.150.101 7001:主节点的ip和端口
    • 2:选举master时的quorum值

然后将s1/sentinel.conf文件拷贝到s2、s3两个目录中(在/tmp目录执行下列命令):

# 方式一:逐个拷贝
cp s1/sentinel.conf s2
cp s1/sentinel.conf s3
# 方式二:管道组合命令,一键拷贝
echo s2 s3 | xargs -t -n 1 cp s1/sentinel.conf

修改s2、s3两个文件夹内的配置文件,将端口分别修改为27002、27003:

sed -i -e 's/27001/27002/g' -e 's/s1/s2/g' s2/sentinel.conf
sed -i -e 's/27001/27003/g' -e 's/s1/s3/g' s3/sentinel.conf

3.2.3 启动

为了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:

# 第1个
redis-sentinel s1/sentinel.conf
# 第2个
redis-sentinel s2/sentinel.conf
# 第3个
redis-sentinel s3/sentinel.conf

启动后:
在这里插入图片描述

3.2.4 测试

尝试让master节点7001宕机,查看sentinel日志:
在这里插入图片描述
查看7003的日志:
在这里插入图片描述
查看7002的日志:
在这里插入图片描述

3.3.RedisTemplate

Sentinel集群监管下的Redis主从集群,其节点会因为自动故障转移而发生变化,Redis的客户端必须感知这种变化,及时更新连接信息。SpringRedisTemplate底层利用lettuce实现了节点的感知和自动切换。

下面,我们通过一个测试来实现RedisTemplate集成哨兵机制。

3.3.1 导入Demo工程

首先,我们引入课前资料提供的Demo工程:
在这里插入图片描述

3.3.2 引入依赖

在项目的pom文件中引入依赖:

<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

3.3.3 配置Redis地址

然后在配置文件application.yml中指定redis的sentinel相关信息:

spring:redis:sentinel:master: mymasternodes:- 192.168.150.101:27001- 192.168.150.101:27002- 192.168.150.101:27003

3.3.4 配置读写分离

在项目的启动类中,添加一个新的bean:

@Bean
public LettuceClientConfigurationBuilderCustomizer clientConfigurationBuilderCustomizer(){return clientConfigurationBuilder -> clientConfigurationBuilder.readFrom(ReadFrom.REPLICA_PREFERRED);
}

这个bean中配置的就是读写策略,包括四种:

  • MASTER:从主节点读取
  • MASTER_PREFERRED:优先从master节点读取,master不可用才读取replica
  • REPLICA:从slave(replica)节点读取
  • REPLICA _PREFERRED:优先从slave(replica)节点读取,所有的slave都不可用才读取master

4 Redis分片集群

4.1 搭建分片集群

主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:

  • 海量数据存储问题

  • 高并发写的问题

使用分片集群可以解决上述问题

4.1.1 集群结构

分片集群需要的节点数量较多,这里我们搭建一个最小的分片集群,包含3个master节点,每个master包含一个slave节点,结构如下:
在这里插入图片描述
分片集群特征:

  • 集群中有多个master,每个master保存不同数据

  • 每个master都可以有多个slave节点

  • master之间通过ping监测彼此健康状态

  • 客户端请求可以访问集群任意节点,最终都会被转发到正确节点

这里我们会在同一台虚拟机中开启6个redis实例,模拟分片集群,信息如下:

IPPORT角色
192.168.150.1017001master
192.168.150.1017002master
192.168.150.1017003master
192.168.150.1018001slave
192.168.150.1018002slave
192.168.150.1018003slave

4.1.2 准备实例和配置

删除之前的7001、7002、7003这几个目录,重新创建出7001、7002、7003、8001、8002、8003目录:

# 进入/tmp目录
cd /tmp
# 删除旧的,避免配置干扰
rm -rf 7001 7002 7003
# 创建目录
mkdir 7001 7002 7003 8001 8002 8003

在/tmp下准备一个新的redis.conf文件,内容如下:

port 6379
# 开启集群功能
cluster-enabled yes
# 集群的配置文件名称,不需要我们创建,由redis自己维护
cluster-config-file /tmp/6379/nodes.conf
# 节点心跳失败的超时时间
cluster-node-timeout 5000
# 持久化文件存放目录
dir /tmp/6379
# 绑定地址
bind 0.0.0.0
# 让redis后台运行
daemonize yes
# 注册的实例ip
replica-announce-ip 192.168.150.101
# 保护模式
protected-mode no
# 数据库数量
databases 1
# 日志
logfile /tmp/6379/run.log

将这个文件拷贝到每个目录下:

# 进入/tmp目录
cd /tmp
# 执行拷贝
echo 7001 7002 7003 8001 8002 8003 | xargs -t -n 1 cp redis.conf

修改每个目录下的redis.conf,将其中的6379修改为与所在目录一致:

# 进入/tmp目录
cd /tmp
# 修改配置文件
printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t sed -i 's/6379/{}/g' {}/redis.conf

4.1.3 启动

因为已经配置了后台启动模式,所以可以直接启动服务:

# 进入/tmp目录
cd /tmp
# 一键启动所有服务
printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t redis-server {}/redis.conf

通过ps查看状态:

ps -ef | grep redis

发现服务都已经正常启动:
在这里插入图片描述

如果要关闭所有进程,可以执行命令:

ps -ef | grep redis | awk '{print $2}' | xargs kill

或者(推荐这种方式):

printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t redis-cli -p {} shutdown

4.1.4 创建集群

虽然服务启动了,但是目前每个服务之间都是独立的,没有任何关联。

我们需要执行命令来创建集群,在Redis5.0之前创建集群比较麻烦,5.0之后集群管理命令都集成到了redis-cli中。

1)Redis5.0之前

Redis5.0之前集群命令都是用redis安装包下的src/redis-trib.rb来实现的。因为redis-trib.rb是有ruby语言编写的所以需要安装ruby环境。

# 安装依赖
yum -y install zlib ruby rubygems
gem install redis

然后通过命令来管理集群:

# 进入redis的src目录
cd /tmp/redis-6.2.4/src
# 创建集群
./redis-trib.rb create --replicas 1 192.168.150.101:7001 192.168.150.101:7002 192.168.150.101:7003 192.168.150.101:8001 192.168.150.101:8002 192.168.150.101:8003

2)Redis5.0以后

我们使用的是Redis6.2.4版本,集群管理以及集成到了redis-cli中,格式如下:

redis-cli --cluster create --cluster-replicas 1 192.168.150.101:7001 192.168.150.101:7002 192.168.150.101:7003 192.168.150.101:8001 192.168.150.101:8002 192.168.150.101:8003

命令说明:

  • redis-cli --cluster或者./redis-trib.rb:代表集群操作命令
  • create:代表是创建集群
  • --replicas 1或者--cluster-replicas 1 :指定集群中每个master的副本个数为1,此时节点总数 ÷ (replicas + 1) 得到的就是master的数量。因此节点列表中的前n个就是master,其它节点都是slave节点,随机分配到不同master

运行后的样子:
在这里插入图片描述

这里输入yes,则集群开始创建:
在这里插入图片描述

通过命令可以查看集群状态:

redis-cli -p 7001 cluster nodes

在这里插入图片描述

【注意】
redis-cluster配置过程中,如果出现了,Waiting for the cluster to join… 这句话,并一直卡在这里,需要考虑以下原因:

	假如现在有3台机器信息如下:A 192.168.131.1 1111(Master)  1112(Slave)B 192.168.131.2 2221(Master)  2222(Slave)C 192.168.131.3 3331(Master)  3332(Slave)
  • 1)配置文件redis.conf 中的bind 设置,IP要是本机地址

        A-redis.conf :bind 192.168.131.1
    
        B-redis.conf :bind 192.168.131.2
    
        C-redis.conf :bind 192.168.131.3
    
  • 2)确保所有使用的端口之间互通,可用telnet ip port 测试**

  • 3)登录到每个客户端,执行 flushall、 cluster reset,重启实例之前你要删除以下文件:

     	 rm -rf nodes.conf          // cluster-config-filerm -rf dump.rdb            // dbfilenamerm -rf appendonly.aof      // appendfilename
    
  • 4)如果通讯端口为6379,那么集群总线端口16379一定要打开【重要】

  • 5)使用cluster meet语法
    如果B给 A、C发送cluster meet信息(这里挺坑的):

    B上执行redis-cli -c -h 192.168.131.2 -p 2221cluster meet 192.168.131.1 1111cluster meet 192.168.131.1 1112cluster meet 192.168.131.3 3331cluster meet 192.168.131.3 3332
    

    如果执行完cluster meet之后,A与B处于handshanke,然后就断掉,导致cluster meet不成功

    尝试检查你机器上的这些端口是否已打开:

      	    A-port 打开:1111(通讯端口)、11111(总线端口)1112(通讯端口)、11112(总线端口)B-port 打开:2221(通讯端口)、12221(总线端口)2222(通讯端口)、12222(总线端口)C-port 打开:3331(通讯端口)、13331(总线端口)3332(通讯端口)、13332(总线端口)
    

4.1.5 测试

尝试连接7001节点,存储一个数据:

# 连接
redis-cli -p 7001
# 存储数据
set num 123
# 读取数据
get num
# 再次存储
set a 1

结果悲剧了:
在这里插入图片描述

集群操作时,需要给redis-cli加上-c参数才可以:

redis-cli -c -p 7001

这次可以了:
在这里插入图片描述

4.2 散列插槽

4.2.1 插槽原理

Redis会把每一个master节点映射到0~16383共16384个插槽(hash slot)上,查看集群信息时就能看到:
在这里插入图片描述
数据key不是与节点绑定,而是与插槽绑定。redis会根据key的有效部分计算插槽值,分两种情况:

  • key中包含"{}",且“{}”中至少包含1个字符,“{}”中的部分是有效部分
  • key中不包含“{}”,整个key都是有效部分

例如:key是num,那么就根据num计算,如果是{itcast}num,则根据itcast计算。计算方式是利用CRC16算法得到一个hash值,然后对16384取余,得到的结果就是slot值。
在这里插入图片描述

如图,在7001这个节点执行set a 1时,对a做hash运算,对16384取余,得到的结果是15495,因此要存储到103节点。

到了7003后,执行get num时,对num做hash运算,对16384取余,得到的结果是2765,因此需要切换到7001节点

4.2.1 小结

Redis如何判断某个key应该在哪个实例?

  • 将16384个插槽分配到不同的实例
  • 根据key的有效部分计算哈希值,对16384取余
  • 余数作为插槽,寻找插槽所在实例即可

如何将同一类数据固定的保存在同一个Redis实例?

  • 这一类数据使用相同的有效部分,例如key都以{typeId}为前缀

4.3 集群伸缩

redis-cli --cluster提供了很多操作集群的命令,可以通过下面方式查看:
在这里插入图片描述
比如,添加节点的命令:
在这里插入图片描述

4.3.1 需求分析

需求:向集群中添加一个新的master节点,并向其中存储 num = 10

  • 启动一个新的redis实例,端口为7004
  • 添加7004到之前的集群,并作为一个master节点
  • 给7004节点分配插槽,使得num这个key可以存储到7004实例

这里需要两个新的功能:

  • 添加一个节点到集群中
  • 将部分插槽分配到新插槽

4.3.2 创建新的redis实例

创建一个文件夹:

mkdir 7004

拷贝配置文件:

cp redis.conf ./7004

修改配置文件:

sed -i /s/6379/7004/g 7004/redis.conf

启动

redis-server 7004/redis.conf

4.3.3 添加新节点到redis

添加节点的语法如下:
在这里插入图片描述

执行命令:

redis-cli --cluster add-node  192.168.150.101:7004 192.168.150.101:7001

通过命令查看集群状态:

redis-cli -p 7001 cluster nodes

如图,7004加入了集群,并且默认是一个master节点:
在这里插入图片描述
但是,可以看到7004节点的插槽数量为0,因此没有任何数据可以存储到7004上

4.3.4 转移插槽

我们要将num存储到7004节点,因此需要先看看num的插槽是多少:
在这里插入图片描述
如上图所示,num的插槽为2765.

我们可以将0~3000的插槽从7001转移到7004,命令格式如下:
在这里插入图片描述

具体命令如下:

建立连接:
在这里插入图片描述

得到下面的反馈:
在这里插入图片描述
询问要移动多少个插槽,我们计划是3000个:

新的问题来了:
在这里插入图片描述

那个node来接收这些插槽??

显然是7004,那么7004节点的id是多少呢?
在这里插入图片描述
复制这个id,然后拷贝到刚才的控制台后:
在这里插入图片描述

这里询问,你的插槽是从哪里移动过来的?

  • all:代表全部,也就是三个节点各转移一部分
  • 具体的id:目标节点的id
  • done:没有了

这里我们要从7001获取,因此填写7001的id:
在这里插入图片描述

填完后,点击done,这样插槽转移就准备好了:
在这里插入图片描述
确认要转移吗?输入yes:

然后,通过命令查看结果:
在这里插入图片描述
可以看到:
image-20210725162224058.png
目的达成。

4.4 故障转移

集群初识状态是这样的:
在这里插入图片描述
其中7001、7002、7003都是master,我们计划让7002宕机。

4.4.1 自动故障转移

当集群中有一个master宕机会发生什么呢?

直接停止一个redis实例,例如7002:

redis-cli -p 7002 shutdown

1)首先是该实例与其它实例失去连接

2)然后是疑似宕机:
在这里插入图片描述
3)最后是确定下线,自动提升一个slave为新的master:
在这里插入图片描述
4)当7002再次启动,就会变为一个slave节点了:
在这里插入图片描述

4.4.2 手动故障转移

利用cluster failover命令可以手动让集群中的某个master宕机,切换到执行cluster failover命令的这个slave节点,实现无感知的数据迁移。其流程如下:
在这里插入图片描述

这种failover命令可以指定三种模式:

  • 缺省:默认的流程,如图1~6歩
  • force:省略了对offset的一致性校验
  • takeover:直接执行第5歩,忽略数据一致性、忽略master状态和其它master的意见

案例需求:在7002这个slave节点执行手动故障转移,重新夺回master地位

步骤如下:

1)利用redis-cli连接7002这个节点

2)执行cluster failover命令

如图:
在这里插入图片描述
效果:
在这里插入图片描述

4.5 RedisTemplate访问分片集群

RedisTemplate底层同样基于lettuce实现了分片集群的支持,而使用的步骤与哨兵模式基本一致:

1)引入redis的starter依赖

2)配置分片集群地址

3)配置读写分离

与哨兵模式相比,其中只有分片集群的配置方式略有差异,如下:

spring:redis:cluster:nodes:- 192.168.150.101:7001- 192.168.150.101:7002- 192.168.150.101:7003- 192.168.150.101:8001- 192.168.150.101:8002- 192.168.150.101:8003

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/227341.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Hadoop入门学习笔记——七、Hive语法

视频课程地址&#xff1a;https://www.bilibili.com/video/BV1WY4y197g7 课程资料链接&#xff1a;https://pan.baidu.com/s/15KpnWeKpvExpKmOC8xjmtQ?pwd5ay8 Hadoop入门学习笔记&#xff08;汇总&#xff09; 目录 七、Hive语法7.1. 数据库相关操作7.1.1. 创建数据库7.1.2…

电脑开机快捷启动,启动菜单没有u盘怎么办

电脑开机快捷启动键找不到u盘怎么办 对于快捷启动键找不到u盘的问题&#xff0c;小编很了解其中的门道&#xff0c;因为开机找不到u盘是我们使用电脑时候的常见问题。那么我们到底要如何解决开机找不到u盘的问题呢?其实方法还是蛮简单的&#xff0c;下面小编就来教大家电脑开…

如何批量删除文件名中的空格?

如何批量删除文件名中的空格&#xff1f;这个操作适合适合什么样的场景呢&#xff1f;相信大家都有过从网上下载文件的经历&#xff0c;我们会发现很多下载的文件名称里面会包含一些空格&#xff0c;如果文件名称的空格太多的话就会对阅读造成一定的影响&#xff0c;最好的办法…

ESP32入门六(读取引脚的模拟信号[2]:信号出现误差的原因)

在之前的章节中&#xff0c;我们测试了用ESP32来接收模拟电压信号&#xff0c;在测试中&#xff0c;读取到的数据与现实存在一定的误差&#xff0c;在这一篇中&#xff0c;我们尝试了解出现误差的原因和解决方法。 对于出现的误差&#xff0c;有多种软件和硬件方面的原因: 一、…

【计算机毕业设计】SSM汽车维修预约平台

项目介绍 本项目分为前后台&#xff0c;前台为普通用户登录&#xff0c;后台为管理员登录&#xff1b; 管理员角色&#xff1a; 管理员登录,新增管理员信息,查看管理员信息,查询管理员信息,查看用户信息列表,查询用户信息,新增新闻公告,查看新闻公告,查询新闻公告,新增配件类…

04-获取认证的用户身份信息

存储用户信息的方式 获取用户信息的流程 用户提交账号和密码后,DaoAuthenticationProvider调用UserDetailsService接口实现类的loadUserByUsername()方法,该方法可以接收请求参数username的值,然后根据该值查询用户信息,最后将账号,密码,权限封装到UserDetails对象中并返回给…

通过AWS Endpoints从内网访问S3

AWS S3作为非结构化数据的存储&#xff0c;经常会有内网中的app调用的需求。S3默认是走公网访问的&#xff0c;如果内网app通过公网地址访问S3并获取数据会消耗公网带宽费用。如下图所示&#xff1a; AWS 提供了一种叫做endpoints的资源&#xff0c;这种资源可以后挂S3服务&a…

ES的使用(Elasticsearch)

ES的使用&#xff08;Elasticsearch&#xff09; es是什么&#xff1f; es是非关系型数据库&#xff0c;是分布式文档数据库&#xff0c;本质上是一个JSON 文本 为什么要用es? 搜索速度快&#xff0c;近乎是实时的存储、检索数据 怎么使用es? 1.下载es的包&#xff08;环境要…

三巨头对决:深入了解pnpm、yarn与npm

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 三巨头对决&#xff1a;深入了解pnpm、yarn与npm 前言包管理器简介npm&#xff08;Node Package Manager&#xff09;&#xff1a;Yarn&#xff1a;pnpm&#xff08;Performant Npm&#xff09;&#…

python爬虫进阶-每日一学(GIF验证码识别)

目的 学习更多的python反爬虫策略 测试网址 http://credit.customs.gov.cn/ccppserver/verifyCode/creator分析 01 下载gif图片 02 使用ddddocr逐帧识别 03 如指定字符串出现次数大于等于3&#xff0c;则认定为正确的识别结果 经验证&#xff0c;识别成功率95%源码 #!/usr…

07-C++ 异常

异常 1. 概念 异常事件&#xff08;如&#xff1a;除 0 溢出&#xff0c;数组下标越界&#xff0c;所要读取的文件不存在,空指针&#xff0c;内存不足等等&#xff09; 在C 语言对错误的处理是两种方法&#xff1a; 一是使用整型的 返回值标识错误&#xff1a;二是使用 errno…

swing快速入门(三十二)消息对话框

注释很详细&#xff0c;直接上代码 上一篇 新增内容 1.自定义对话框前列图标 2.消息对话框的若干种形式 package swing21_30;import javax.swing.*; import java.awt.*; import java.awt.event.ActionEvent;public class swing_test_30 {// 定义一个JFrameJFrame jFrame n…

Redis内存使用率高,内存不足问题排查和解决

问题现象 表面现象是系统登录突然失效&#xff0c;排查原因发现&#xff0c;使用redis查询用户信息异常&#xff0c;从而定位到redis问题 if (PassWord.equals(dbPassWord)) {map.put("rtn", 1);map.put("value", validUser);session.setAttribute("…

初识智慧城市

文章目录 智慧家居 智慧社区 智慧交通 智慧医疗 智慧教育 智慧旅游 智慧农业 智慧安防 智慧家居 利用智能语音、智能交互等技术,实现用户对家居系统各设备的远程操控和能控制如开关窗帘(窗户)、操控家用电器和照明系统、打扫卫生等操作。利用计算机视觉等技术,对被照看…

java爬虫(jsoup)如何设置HTTP代理ip爬数据

目录 前言 什么是HTTP代理IP 使用Jsoup设置HTTP代理IP的步骤 1. 导入Jsoup依赖 2. 创建HttpProxy类 3. 设置代理服务器 4. 使用Jsoup进行爬取 结论 前言 在Java中使用Jsoup进行网络爬虫操作时&#xff0c;有时需要使用HTTP代理IP来爬取数据。本文将介绍如何使用Jsoup设…

智能监控平台/视频共享融合系统EasyCVR海康设备国标GB28181接入流程

TSINGSEE青犀视频监控汇聚平台EasyCVR可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安防视频监控的能力&…

sqlilabs第三十二三十三关

Less-32&#xff08;GET - Bypass custom filter adding slashes to dangerous chars) 手工注入 由 宽字符注入可知payload 成功触发报错 http://192.168.21.149/Less-32/ ?id1%df 要写字符串的话直接吧字符串变成ascii码 注意16进制的表示方式 自动注入 sqlmap -u http:…

饥荒Mod 开发(二二):显示物品信息

饥荒Mod 开发(二一)&#xff1a;超大便携背包&#xff0c;超大物品栏&#xff0c;永久保鲜 饥荒Mod 开发(二三)&#xff1a;显示物品栏详细信息 饥荒中的物品没有详细信息&#xff0c;基本上只有一个名字&#xff0c;所以很多物品的功能都不知道&#xff0c;比如浆果吃了也不知…

鸿蒙4.0实战教学—基础ArkTS(简易视频播放器)

构建主界面 主界面由视频轮播模块和多个视频列表模块组成&#xff0c;效果图如图&#xff1a; VideoData.ets中定义的视频轮播图数组SWIPER_VIDEOS和视频列表图片数组HORIZONTAL_VIDEOS。 // VideoData.ets import { HorizontalVideoItem } from ./HorizontalVideoItem; impo…

35.搜索插入位置

给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 示例 1: 输入: nums [1,3,5,6], target 5 输出: 2示例 2: 输入:…