从 Linux Crontab 到 K8s CronJob,定时任务正在经历怎样的变革

作者:黄晓萌(学仁)

背景

Job 表示短周期的作业,定时 Job 表示按照预定的时间运行Job,或者按照某一频率周期性的运行 Job。比如:

image.png

许多传统企业使用 Linux 自带的 crontab 来做定时任务的方案,该方案非常简单,适合做主机上的运维工作,比如定时清理日志、周期性做健康检查。随着信息化时代的高速发展,业务变得越来越复杂,很多场景都需要定时任务,但是 crontab 方案存在高可用问题,不适合应用在业务应用上。

在云原生时代,K8s CronJob 设计了一套高可用的定时任务解决方案,保障了业务的稳定。但是把 K8s CronJob 应用在生产上,发现定时任务真的出问题的时候排查起来很麻烦,于是越来越多用户对定时任务的可观测有了更多的诉求,阿里云也推出了自己的云原生定时任务解决方案,可以托管原生 K8s CronJob,提供可报警、可观测、可运维等能力,帮助企业提效。

Linux Crontab 方案面临的问题

什么是 Crontab

Crontab 是 Linux 系统中的一个服务,用于创建、编辑和管理定时任务。通过 crontab 命令,用户可以设置系统在指定时间自动执行某个命令或脚本。

Crontab 命令的语法分为两部分,分别是时间表达式和命令。时间表达式如下:

# ┌───────────── 分钟 (0 - 59)
# │ ┌───────────── 小时 (0 - 23)
# │ │ ┌───────────── 月的某天 (1 - 31)
# │ │ │ ┌───────────── 月份 (1 - 12)
# │ │ │ │ ┌───────────── 周的某天 (0 - 6)(周日到周一;在某些系统上,7 也是星期日)
# │ │ │ │ │                          或者是 sun,mon,tue,web,thu,fri,sat
# │ │ │ │ │
# │ │ │ │ │
# * * * * *

命令常用来执行某个脚本,举个例子:

  • 每隔 5 分钟执行 hello.sh:*/5 * * * * sh /root/script/hello.sh
  • 每天早上 6 点半执行 world.py:  30 6 * * * python /root/script/world.py

Crontab 的工作原理

Crontab 由一个名为"Crond"的守护进程负责调度任务,当 Crond 启动的时候,就会从配置文件(路径在 /var/spool/cron 下)加载所有的定时任务。当执行 crontab 命令的时候,会动态的添加新的定时任务,并加入到配置文件中。Crontab 每次执行任务,都会产生执行记录,目录在 /var/log/cron 下。

图片

Crontab 的痛点问题

图片

使用 crontab 主要有如下痛点:

  • 无高可用: 为了保证业务幂等执行,需要在不同的机器配置不同的 crontab 任务。crontab 只能调度本机器上的定时任务,如果某一个机器挂了,那上面的定时任务也都不会执行了,有稳定性风险。
  • 无自动负载均衡: 不同的脚本放在不同的机器上,需要手动负载均衡,如果脚本比较多,运维代价很高。
  • 无权限隔离: 一般企业生产的机器只有运维才能登陆,但是开发要新增/修改脚本和定时任务,也需要登录到生产的机器上,没法做到权限隔离。

云原生 K8s CronJob 方案的优势

什么是 K8s CronJob

Job 是 K8s 中的一种资源,用来处理短周期的 Pod,相当于一次性任务,跑完就会把 Pod 销毁,不会一直占用资源,可以节省成本,提高资源利用率。CronJob 也是 K8s 中的资源,用来周期性的重复调度 Job。

下面是一个 CronJob 的示例,每隔 5 分钟调度脚本 edas/schedulerx-job.sh:

apiVersion: batch/v1
kind: CronJob
metadata:name: hello
spec:schedule: "*/5 * * * *"jobTemplate:spec:template:spec:containers:- name: helloimage: busybox:1.28imagePullPolicy: IfNotPresentcommand: ["/bin/sh", "/root/script/edas/schedulerx-job.sh"]restartPolicy: OnFailure

K8s CronJob 的优势

图片

与单纯使用 Crontab 相比,使用 K8s CronJob 带来了如下优势:

  • 高可用: K8s 会保证集群的高可用,如集群中有节点挂了,都不会影响定时任务的调度。
  • 自动负载均衡: Pod 默认选择负载最低的 node 执行,支持 NodeSelector 和亲和性等多种负载均衡策略。
  • 权限隔离: 只有运维可以登录 master 和 worker 节点,开发通过管控或者 ApiServer 来创建和更新 CronJob,并且支持命名空间隔离,RBAC 权限管理。

K8s CronJob 的进阶能力

Linux Crontab 只能周期性调度本机的脚本,功能比较简单,K8s 定时任务支持更多的进阶能力:

  • 在 Job 资源上
    • 并行执行: 通常一个 Job 只启动一个 Pod,可以通过配置 spec.completions 参数,来决定一个 Job 要执行多少个 Pod。
    • 索引任务: 并行执行通常需要和索引任务结合使用,当配置 .spec.completionMode=“Indexed” 时,这个 Job 就是一个索引任务,每个 Pod 会获得一个不同的索引值,介于 0 和 .spec.completions-1 之间,这样就可以让不同的 Pod 根据索引值处理不同的数据。
    • 并行限流: 并行执行的时候,通常还需要做限流,可以配置 .spec.parallelism 参数,来控制一个 Job 最多同时跑多少个 Pod。
    • 失败自动重试: 可以配置 .spec.backoffLimit,来设置 Job 失败重试次数。
    • 超时: 可以配置 .spec.activeDeadlineSeconds,来设置 Job 超时的时间。
  • 在 CronJob 资源上
    • 时区: 可以通过设置 .spec.timeZone 参数,决定 CronJob 按照哪个时区的时间来调度任务。
    • 并发性规则: 当一个 Job 还在执行,下次调度时间到了,是否执行新的 Job,可以通过 .spec.concurrencyPolicy 来配置,取值为 Allow/Forbid/Replace。
    • 任务历史限制: 可以通过配置 .spec.successfulJobsHistoryLimit 和 .spec.failedJobsHistoryLimit 来决定保留多少成功和失败的 Job。

阿里云 K8s CronJob 提效新模式

阿里云分布式任务调度 SchedulerX 和云原生结合,推出可视化 K8s Job 解决方案。针对脚本使用者,屏蔽了容器服务的细节,不用构建镜像就可以让不熟悉容器的同学(比如运维和运营同学)玩转 K8s Job,受益容器服务带来的降本增效福利。针对容器使用者,SchedulerX 不但完全兼容原生的 K8s Job,还能支持历史执行记录、日志服务、重跑任务、报警监控、可视化任务编排等能力,为企业级应用保驾护航。

快速迁移 Crontab 脚本任务

通过上面的章节,我们知道 Linux Crontab 存在许多问题,迁移到 K8s CronJob 可以带来很多好处,但是要从 crontab 迁移到 K8s CronJob 还是挺麻烦的,这里以通过 python 脚本访问数据库为例,来对比两种方案的差异。

K8s 原生解决方案
  1. 将 crontab 脚本拷贝到本地,取名为 edas/schedulerx-job.py
#!/usr/bin/python
# -*- coding: UTF-8 -*-import MySQLdb# 打开数据库连接
db = MySQLdb.connect("localhost", "testuser", "test123", "TESTDB", charset='utf8' )# 使用cursor()方法获取操作游标 
cursor = db.cursor()# SQL 查询语句
sql = "SELECT * FROM EMPLOYEE \
WHERE INCOME > %s" % (1000)
try:# 执行SQL语句cursor.execute(sql)# 获取所有记录列表results = cursor.fetchall()for row in results:fname = row[0]lname = row[1]age = row[2]sex = row[3]income = row[4]# 打印结果print "fname=%s,lname=%s,age=%s,sex=%s,income=%s" % \(fname, lname, age, sex, income )except:print "Error: unable to fetch data"# 关闭数据库连接
db.close()
  1. 在本地编写 Dockerfile
FROM python:3WORKDIR /usr/src/appCOPY requirements.txt ./
RUN pip install --no-cache-dir -r requirements.txtCOPY edas/schedulerx-job.py /root/edas/schedulerx-job.pyCMD [ "python", "/root/edas/schedulerx-job.py" ]
  1. 制作 docker 镜像,推到镜像仓库中
docker build -t registry.cn-beijing.aliyuncs.com/demo/edas/schedulerx-job:1.0.0 .
docker push registry.cn-beijing.aliyuncs.com/demo/edas/schedulerx-job:1.0.0
  1. 编写 K8s CronJob 的 YAML 文件,image 选择第 3 步制作的镜像,command 的命令为执行脚本
apiVersion: batch/v1
kind: CronJob
metadata:name: demo-python
spec:schedule: "*/5 * * * *"jobTemplate:spec:template:spec:containers:- name: demo-pythonimage: registry.cn-beijing.aliyuncs.com/demo/edas/schedulerx-job:1.0.0imagePullPolicy: IfNotPresentcommand: ["python",  "/root/edas/schedulerx-job.py"]restartPolicy: OnFailure

我们看到把一个 contab 迁移到 K8s CronJob,就需要这么多步骤,如果之后要修改脚本,还需要重新构建镜像和重新发布 K8s CronJob,这里先不计算开始之前的学习成本,单纯从使用角度来看,有着较高的上手成本。

阿里云解决方案

阿里任务调度 SchedulerX 结合云原生技术,提出了一套可视化的脚本任务解决方案,通过任务调度系统来管理脚本,直接在线编写脚本,不需要构建镜像,就可以将脚本以 Pod 的方式在用户的 K8s 集群当中运行起来,使用非常方便,如下图:

图片

  1. 在你的 K8s 集群中部署一个 schedulerx-deployment(只需要装一次),注册到 SchedulerX 上来,让 SchedulerX 可以调度你的 K8s 上的 Pod

  2. 在 SchedulerX 任务管理新建一个 K8s 任务,资源类型选择 Python-Script(当前支持 shell/python/php/nodejs 四种脚本类型),把脚本拷贝进去,然后配置定时表达式

图片

这里的镜像只需要构建一个基础镜像即可,如果脚本内容有修改,只要依赖的库没有改变,就不需要重新构建镜像。

  1. 等调度时间到了,或者通过控制台手动运行一次,可以在 K8s 集群中看到以 Pod 的方式运行脚本,Pod 名称为 schedulerx-python-{JobId}

image.png

下面通过一个表格更方便的看到两个方案的差异:

K8s原生解决方案阿里云解决方案
脚本管理不支持支持,通过SchedulerX控制台可以进行脚本管理
开发效率慢,每次修改脚本都需要重新构建镜像快,在线修改脚本,不需要构建镜像,自动部署
学习成本高,需要学习Docker和K8s等容器相关知识低,不需要容器相关知识,会写脚本就行

增强原生 K8s CronJob

SchedulerX 不但能够快速开发 K8s 脚本任务,屏蔽容器服务的细节,给不熟悉容器服务的同学带来福音,同时还能托管原生 K8s Job/CronJob,增强可运维可观测等能力。

K8s 原生解决方案

以官方提供的 CronJob 为例。

  1. 编写 hello.yaml
apiVersion: batch/v1
kind: CronJob
metadata:name: hello
spec:schedule: "* * * * *"jobTemplate:spec:template:spec:containers:- name: helloimage: perl:5.34command: ["perl",  "-Mbignum=bpi", "-wle", "print bpi(100)"]restartPolicy: OnFailure
  1. 在 K8s 集群中运行该 CronJob,查看 pod 历史记录和日志

图片

发现原生的 CronJob 只能查看最近 3 条执行记录和日志,想要查看更久之前的记录无法看到,这在业务出现问题想排查的时候就变得尤为困难。虽然可以通过配置 .spec.successfulJobsHistoryLimit 和 .spec.failedJobsHistoryLimit 来保留更多的 Pod 历史记录,但是保留更多的 Pod,就会更加占用 K8s 集群的资源,因为 Job 已经跑完了,只是为了查看日志保留更多历史记录,成本太高了。

阿里云解决方案

阿里任务调度 SchedulerX 可以托管原生 K8s Job/CronJob,方便移植,使用 SchedulerX 托管,可以具有更强的可运维可观测能力,比如任务重跑、日志服务、报警监控等。

  1. 新建 K8s 任务,任务类型选择 K8s,资源类型选择 Job-YAML,打印 bpi(-1)

图片

  1. 通过工具来生成 cron 表达式,比如每小时第 8 分钟跑

图片

  1. 调度时间还没到,也可以手动点击“运行一次”来进行测试

图片

  1. 在 K8s 集群中可以看到 Job 和 Pod 启动成功,每个任务只会保留最近一次调度的 Pod,减少 K8s 集群的资源占用

图片

  1. 在 SchedulerX 控制台也可以看到历史执行记录,发现运行失败

image.png

  1. 在 SchedulerX 控制台可以看到任务运行日志,查看失败原因

图片

  1. 在线修改任务的 YAML,打印 bpi(100)

图片

  1. 不需要删除 Job,通过控制台来重跑任务

image.png

  1. 任务重跑成功,且能看到新的日志

图片

图片

下面通过一个表格来对比两个方案的差异:

K8s原生解决方案阿里云解决方案
手动运行一次不支持支持
手动重跑任务不支持支持
Cron定时调度支持,YAML配置支持,兼容开源CronJob的YAML,也支持通过控制台动态配置
K8s资源占用高,保留最近3次Pod低,仅保留最近1次Pod
历史记录最近3次最近300次
日志最近3次最近2周,支持搜索
报警不支持支持,企业级报警通知服务
操作记录不支持支持

总结

在云原生时代,使用 K8s CronJob 在很多场景下可以作为 Linux Crontab 替换的解决方案,解决了crontab的一系列痛点问题。通过阿里云 SchedulerX 来调度你的 K8s CronJob,能够降低学习成本,加快开发效率,让你的任务失败可报警,出问题可排查, 打造云原生可观测体系下的定时任务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/228271.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[Linux] MySQL数据库的备份与恢复

一、数据库备份的分类和备份策略 1.1 数据库备份的分类 1)物理备份 物理备份:对数据库操作系统的物理文件(如数据文件、日志文件等)的备份。 物理备份方法: 冷备份(脱机备份) :是在关闭数据库的时候进…

python+opencv实现图片/短视频一键去水印

目录 0 前言1 准备工作2 读取图片或视频3 添加回调获取鼠标绘制水印区域4 调用opencv函数5 绘制蒙版主循环6 去水印主循环总结 0 前言 在制作ppt个人文章或者分享图片过程中,经常会遇到一些带有水印的情况,不少人都希望能够去除这些水印,提高…

【解决复杂链式任务打造全能助手】大模型思维链 CoT 应用:langchain 大模型 结合 做 AutoGPT

大模型思维链 CoT 应用:langchain 大模型 结合 做 AutoGPT,解决复杂链式任务打造全能助手 思维链 CoTlangchainlangchain 大模型结合打造 AutoGPT 思维链 CoT 最初的语言模型都是基于经验的,只能根据词汇之间的相关性输出答案,根…

安装Hadoop:Hadoop的单机模式、伪分布式模式——备赛笔记——2024全国职业院校技能大赛“大数据应用开发”赛项

前言 Hadoop包括三种安装模式: 单机模式:只在一台机器上运行,存储是采用本地文件系统,没有采用分布式文件系统HDFS;伪分布式模式:存储采用分布式文件系统HDFS,但是,HDFS的名称节点…

Spring AOP—深入动态代理 万字详解(通俗易懂)

目录 一、前言 二、动态代理快速入门 1.为什么需要动态代理? : 2.动态代理使用案例: 3.动态代理的灵活性 : 三、深入动态代理 1.需求 : 2.实现 : 2.1 接口和实现类 2.2 提供代理对象的类 2.3 测试类 3.引出AOP : 四、总结 一、前言 第四节内容…

【算法】数论---欧拉函数

什么是欧拉函数? 对于正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目,记作φ(n) φ(1)1 当m,n互质时,φ(mn)φ(m)∗φ(n) 一、求一个正整数的欧拉函数---(先对它分解质因数,然后套公式&#xf…

elementui+vue2 input输入框限制只能输入数字

方法1 自定义表单校验 <el-form :model"Formdata" ref"formRef" :rules"nodeFormRules" label-width"100px"><el-form-itemlabel"年龄"prop"age"><el-input v-model.number"Formdata.age&q…

每日一练(编程题-C/C++)

目录 CSDN每日一练1. 2023/2/27- 一维数组的最大子数组和(类型&#xff1a;数组 难度&#xff1a;中等)2. 2023/4/7 - 小艺照镜子(类型&#xff1a;字符串 难度&#xff1a;困难)3. 2023/4/14 - 最近的回文数(难度&#xff1a;中等)4. 2023/2/1-蛇形矩阵(难度&#xff1a;困难)…

flask文件夹列表改进版--Bug追踪

把当前文件夹下的所有文件夹和文件列出来&#xff0c;允许点击返回上层目录&#xff0c;允许点击文件夹进入下级目录并显示此文件夹内容 允许点击文件进行下载 from flask import Flask, render_template, send_file, request, redirect, url_for import osapp Flask(__name_…

QT编译并部署QtMqtt相关环境+跑测demo【超详细教程】

文章目录 概要整体架构流程▷下载指定版本的QMqtt源码&#xff1a;▷编译后同步MQTT相关文件&#xff1a; 技术名词解释技术实现步骤详解一、编译源码1、编译报错2、解决思路3、编译通过 二、继续完善mqtt应用环境1、打开编译生成的shadow build文件夹2、同步lib3、同步bin4、同…

FA对接FC流程

2、FA进行对接 &#xff08;1&#xff09;首先安装好AD域控服务器DHCPDNS&#xff08;注意&#xff0c;不要忘记了做DNS正反向解析&#xff0c;就是把已经安装了ITA的主机做解析&#xff09;&#xff0c;在里面创建域用户 &#xff08;2&#xff09;安装ITA和VAG/VLB&#xf…

4.32 构建onnx结构模型-Erf

前言 构建onnx方式通常有两种&#xff1a; 1、通过代码转换成onnx结构&#xff0c;比如pytorch —> onnx 2、通过onnx 自定义结点&#xff0c;图&#xff0c;生成onnx结构 本文主要是简单学习和使用两种不同onnx结构&#xff0c; 下面以 Erf 结点进行分析 方式 方法一&…

R306指纹识别模块指令系统

一&#xff1a;指令集 1. GR_GetImage 指令代码&#xff1a;01H 功能&#xff1a;从传感器上读入图像存于图像缓冲区 2. GR_GenChar 指令代码&#xff1a;02H 功能&#xff1a;根据原始图像生成指纹特征存于 CharBuffer1 或 CharBuffer2 3. GR_Match 指令代码&#xff…

【操作系统xv6】学习记录1

前置说明&#xff1a; git-v9版本&#xff1a;git clone https://github.com/mit-pdos/xv6-public/tree/xv6-rev9 bili:https://www.bilibili.com/video/BV15r4y1z75F 深圳大学罗秋明老师的课程 我自己用的wsl2的ubuntu18 无桌面版本 make qemu-nox bug 起初在双系统的ubuntu…

matlab列优先与高维矩阵重构

由于matlab在列化a(:)以及reshape(a)等操作中是列优先的&#xff0c;所以要重构出新的高维度矩阵&#xff0c;通常要把reshape和permute结合起来使用。 先到 http://caffe.berkeleyvision.org/ 下载 训练好的model bvlc_reference_caffenet.caffemodel; 更多caffe使用也请参看…

分布式【雪花算法】

雪花算法 背景&#xff1a;在分布式系统中&#xff0c;需要使用全局唯一ID&#xff0c;期待ID能够按照时间有序生成。 **原理&#xff1a;**雪花算法是 64 位 的二进制&#xff0c;一共包含了四部分&#xff1a; 1位是符号位&#xff0c;也就是最高位&#xff0c;始终是0&am…

Python数值型字符串校验(try异常拦截解析)

从键盘输入一行字符串&#xff0c;编写Python代码判定字符串是python“合法”数值。 (笔记模板由python脚本于2023年12月25日 18:00:52创建&#xff0c;本篇笔记适合熟悉Python符串基本数据类型的coder翻阅) 【学习的细节是欢悦的历程】 Python 官网&#xff1a;https://www.py…

docker +gitee+ jenkins +maven项目 (一)

jenkins环境和插件配置 文章目录 jenkins环境和插件配置前言一、环境版本二、jenkins插件三、环境安装总结 前言 现在基本都是走自动化运维&#xff0c;想到用docker 来部署jenkins &#xff0c;然后jenkins来部署java代码&#xff0c;做到了开箱即用&#xff0c;自动发布代码…

【42页动态规划学习笔记分享】动态规划核心原理详解及27道LeetCode相关经典题目汇总

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能AI、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推荐--…

DevOps持续交付之容器化CICD流水线

DevOps持续交付 随着DevOps⼤规模化的落地和应⽤&#xff0c;持续集成以及持续交付已经是⼀种常态的。CI指的是持续集成&#xff0c;使⽤的开源⼯具是Jenkins&#xff0c;CD指的是持续交付和持续部署&#xff0c;⼀个完整的软件开发⽣命周期为: 主要流程可以具体为: 构建阶段…