C#,图论与图算法,任意一对节点之间最短距离的弗洛伊德·沃肖尔(Floyd Warshall)算法与源程序

一、弗洛伊德·沃肖尔算法

Floyd-Warshall算法是图的最短路径算法。与Bellman-Ford算法或Dijkstra算法一样,它计算图中的最短路径。然而,Bellman Ford和Dijkstra都是单源最短路径算法。这意味着他们只计算来自单个源的最短路径。另一方面,Floyd Warshall计算输入图中每对顶点之间的最短距离。

假设你有5个朋友:比利、珍娜、卡西、艾丽莎和哈里。你知道有几条路连接他们的一些房子,你知道这些路的长度。但是,弗洛伊德·沃沙尔可以利用你所知道的,并根据这些信息为你提供最佳路线。例如,看看下面的图表,它显示了从一个朋友到另一个朋友的路径以及相应的距离。

我们初始化解矩阵的第一步与输入图矩阵相同。然后,我们通过将所有顶点视为中间顶点来更新解矩阵。其思想是一个接一个地拾取所有顶点,并更新所有最短路径,其中包括拾取的顶点作为最短路径中的中间顶点。当我们选取顶点数 k 作为中间顶点时,我们已经考虑了顶点{0,1,2,..k-1}作为中间顶点。对于源顶点和目标顶点的每一对(I,j),都有两种可能的情况。 1) k 在从 I 到 j 的最短路径中不是中间顶点,我们保持 dist[i][j]的值不变。 2) k 是从 I 到 j 的最短路径中的中间顶点,我们将 dist[i][j]的值更新为 dist[I][k]+dist[k][j]if dist[I][j]>dist[I][k]+dist[k][j] 下图显示了以上全对最短路径问题中的最优子结构性质。

二、Floyd-Warshall算法的应用

1、最短距离

弗洛伊德·沃沙尔将告诉每对朋友之间的最佳距离。它将清楚地告诉您,从Alyssa的房子到Harry的房子的最快路径是连接边,其权重为1。但是,它也会告诉你,从比利家到珍娜家的最快方式是先经过卡西家,然后是艾丽莎家,然后是哈利家,最后才到珍娜家。这就是弗洛伊德·华肖的力量;无论你现在在哪所房子,它都会告诉你去其他房子的最快方式。

Floyd-Warshall算法是动态规划的一个例子。它将问题分解为较小的子问题,然后将这些子问题的答案结合起来,以解决较大的初始问题。想法是这样的:要么从A到C的最快路径是从A到C的最快路径,要么是从A到B的最快路径加上从B到C的最快路径。

Floyd Warshall在网络方面非常有用,类似于最短路径问题的解决方案。但是,它在管理路线上的多个站点时更有效,因为它可以计算所有相关节点之间的最短路径。事实上,Floyd Warshall的一次运行可以为您提供有关静态网络的所有信息,以优化大多数类型的路径。它在计算矩阵求逆时也很有用。

2、求解离散数学中传递闭包

离散数学中传递闭包怎么求?传递闭包的求法就是:通过反复求矩阵的幂,直到结果不在变化为止!可以选择用warshall法,不断的运行,直到MR[n][i],MR[i][n]都为1时使得MR[i][j]为1,不然的话还是要继续不断的运行,直到结果MR[n][i],MR[i][n]都为1时使得MR[i][j]为1就停止。

在这个式子中,a数组中为布尔数组,主要是用来描述两个节点是不是出于一个相连的地位上,可以看出做这样一个无权图的邻接矩阵,在算法过程中是和Floyd相当相似,而且三重循环的话是需要列出中间的每一个节点,不过对于传递闭包而言的话,只是需要求出两个节点是不是相连,并不用在进一步的求解两个线路中间的最短路径了。

传递闭包最为简单的技术就是选择采用弗洛伊德算法,选择用Floyd-Warshall算法能够最简便的解决任意两点之间最简单的路径中的一个算法,而且还可以这个却的出力有向图或者负权。

时间复杂度: O(V^3) 上面的程序只打印最短的距离。我们还可以通过将前置信息存储在单独的 2D 矩阵中来修改解决方案以打印最短路径。 同样,INF 的值可以从 limits.h 取为 INT_MAX,以确保我们处理最大可能值。当我们取 INF 为 INT_MAX 时,需要改变上述程序中的 if 条件,以避免算术溢出。

三、算法思路

1、算法所要解决的问题称为多源最短路径问题,算法完成后可求出任意两点之间的最短路径,所以既然他这么简单,那么这五行码有什么意义?

A和 B的直接距离是6,那么我们该如何缩小它们之间的距离?

其算法的具体思想如下:一想,我只经过 C这个点的中转就可以让

2、相邻矩阵 dist存储路径,而最终状态表示点的最短路径。若没有直接关联的点,默认值为一个非常大的值(不要溢出)!并且自身的长度是0。

将从1到 n点依次添加到图中。每一点都加入以测试是否有路径长度被改变。

并以图中每个点(i, j两次循环)为例,判断每个点对距离是否因所加入的点而变化最小。若有变化,则两点(i、 j)距离将改变。

非常简单,我们只需通过其它点的中转就可以了,这里我们就是 C点,可以让 A和 B之间的距离到达5,然后我再想一想,我只经过 C这个点的中转就可以让他们的距离变小,

为了确定这个周期的最外层循环被用于传递这个周期中的哪个点。即,第一次循环是以一号顶点为中转站,观察是否可以将其他点间的距离减小,第二个循环是在第一个循环的基础。

总结: warshall算法的时间复杂度为 O (n3),实现简单,适用于处理稠密图与顶点关。

四、实现代码

参考:

C#,图(Graph)的数据结构设计与源代码icon-default.png?t=O83Ahttps://blog.csdn.net/beijinghorn/article/details/125133711?spm=1001.2014.3001.5501

源代码(POWER BY TRUFFER):

using System;
using System.Text;
using System.Collections;
using System.Collections.Generic;namespace Legalsoft.Truffer.Algorithm
{public partial class Graph{public int[,] Floyd_Warshall(){int V = Node_Number;int[,] dist = new int[V, V];for (int i = 0; i < V; i++){for (int j = 0; j < V; j++){dist[i, j] = Matrix[i, j];}}for (int k = 0; k < V; k++){for (int i = 0; i < V; i++){for (int j = 0; j < V; j++){if (dist[i, k] + dist[k, j] < dist[i, j]){dist[i, j] = dist[i, k] + dist[k, j];}}}}return dist;}}public static partial class GraphDrives{public static string Floyd_Warshall(){StringBuilder sb = new StringBuilder();int INF = 99999;int[,] m = { {  0,   5, INF,  10 },{INF,   0,   3, INF },{INF, INF,   0,   1 },{INF, INF, INF,   0 }};Graph g = new Graph(m);g.AdjacencyMatrix();int[,] dist = g.Floyd_Warshall();return Algorithm_Gallery.ToHtml(dist);}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/2288.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android中下载 HAXM 报错 HAXM installation failed,如何解决?

AMD芯片的电脑在 Android Studio 中安装 Virtual Device 时&#xff0c;经常会出现一个 问题 Intel HAXM installation failed. To install Intel HAXM follow the instructions found at: https://github.com/intel/haxm/wiki/Installation-Instructions-on-Windows 一直提示H…

少一点If/Else - 状态模式(State Pattern)

状态模式&#xff08;State Pattern&#xff09; 状态模式&#xff08;State Pattern&#xff09;状态模式&#xff08;State Pattern&#xff09;概述状态模式&#xff08;State Pattern&#xff09;结构图状态模式&#xff08;State Pattern&#xff09;涉及的角色 talk is c…

mayavi -> python 3D可视化工具Mayavi的安装

前言 Mayavi是一个基于VTK&#xff08;Visualization Toolkit&#xff09;的科学计算和可视化工具&#xff0c;主要用于数据可视化和科学计算领域。 它提供了一系列的高级可视化工具&#xff0c;包括2D和3D图形、表面和体积渲染、流场可视化等。Mayavi可以通过Python脚本进行调…

idea 自动导包,并且禁止自动导 *(java.io.*)

自动导包配置 进入 idea 设置&#xff0c;可以按下图所示寻找位置&#xff0c;也可以直接输入 auto import 快速定位到配置。 Add unambiguous imports on the fly&#xff1a;自动帮我们优化导入的包Optimize imports on the fly&#xff1a;自动去掉一些没有用到的包 禁止导…

BI 是如何数据分析的?

企业部署商业智能BI前&#xff0c;需要进行详细的分析&#xff0c;了解BI能为企业带来多少价值&#xff1f;如何提高工作效率的等等&#xff0c;今天我们就来聊一聊 BI 的工作原理。 一、BI的取数方式 商业智能BI是通过访问和连接业务系统数据源数据库的方式来进行取数的&…

宇泰串口卡驱动在Ubuntu22.04编译、安装汇总

从官网下载驱动官网地址 上传到Ubuntu, 目录结构如下&#xff1a; 驱动源代码: 驱动代码是基于开源项目编译来的 编译路径不能有中文路径&#xff0c;否则可能有类似错误 源码是基于Linux2.3内核编译&#xff0c;我当前是6.8.0-51&#xff0c;数据结构有升级&#xff0c;需要调…

HarmonyOS 鸿蒙 ArkTs(5.0.1 13)实现Scroll下拉到顶刷新/上拉触底加载,Scroll滚动到顶部

HarmonyOS 鸿蒙 ArkTs(5.0.1 13)实现Scroll下拉到顶刷新/上拉触底加载 效果展示 使用方法 import LoadingText from "../components/LoadingText" import PageToRefresh from "../components/PageToRefresh" import FooterBar from "../components/…

上传自己的镜像到docker hub详细教程

上传自己的镜像到docker hub详细教程 本博客通B站视频一致&#xff1a; 上传自己的镜像到docker hub详细教程 1. 登录自己的hub.docker.com的账号 docker hub仓库 2. 点击Repositories&#xff0c;跳转到创建仓库页面 3. 点击Create a repository 创建repository&#xff0c…

[AI部署-tensorRT] customlayer定义添加过程解析

文章目录 tensorRT添加自定义层步骤1. trt如何解析onnx的&#xff1f; 整体流程图2. builtin_op_importor是干什么的&#xff1f;3. 怎么添加trt plugin4. 如何进行量化collection过程 references nvidia 官方plugin文档&#xff1a; https://www.nvidia.cn/content/dam/en-zz/…

[Do374]Ansible一键搭建sftp实现用户批量增删

[Do374]Ansible一键搭建sftp实现用户批量增删 1. 前言2. 思路3. sftp搭建及用户批量新增3.1 配置文件内容3.2 执行测试3.3 登录测试3.4 确认sftp服务器配置文件 4. 测试删除用户 1. 前言 最近准备搞一下RHCA LV V,外加2.9之后的ansible有较大变化于是练习下Do374的课程内容. 工…

易语言文字识别OCR

一.引言 文字识别&#xff0c;也称为光学字符识别&#xff08;Optical Character Recognition, OCR&#xff09;&#xff0c;是一种将不同形式的文档&#xff08;如扫描的纸质文档、PDF文件或数字相机拍摄的图片&#xff09;中的文字转换成可编辑和可搜索的数据的技术。随着技…

Docker 镜像制作原理 做一个自己的docker镜像

一.手动制作镜像 启动容器进入容器定制基于容器生成镜像 1.启动容器 启动容器之前我们首先要有一个镜像&#xff0c;这个镜像可以是从docker拉取&#xff0c;例如&#xff1a;现在pull一个ubuntu镜像到本机。 docker pull ubuntu:22.04 我们接下来可以基于这个容器进行容器…

网络编程 - - TCP套接字通信及编程实现

概述 TCP&#xff08;Transmission Control Protocol&#xff0c;传输控制协议&#xff09;是一种面向连接的、可靠的传输层协议。在网络编程中&#xff0c;TCP常用于实现客户端和服务器之间的可靠数据传输。本文将基于C语言实现TCP服务端和客户端建立通信的过程。 三次握手 在…

近红外简单ROI分析matlab(NIRS_SPM)

本次笔记主要想验证上篇近红外分析是否正确&#xff0c;因为叠加平均有不同的计算方法&#xff0c;一种是直接将每个通道的5分钟实时长单独进行叠加平均&#xff0c;另一种是将通道划分为1分钟的片段&#xff0c;将感兴趣的通道数据进行对应叠加平均&#xff0c;得到一个总平均…

从玩具到工业控制--51单片机的跨界传奇【2】

咱们在上一篇博客里面讲解了什么是单片机《单片机入门》&#xff0c;让大家对单片机有了初步的了解。我们今天继续讲解一些有关单片机的知识&#xff0c;顺便也讲解一下我们单片机用到的C语言知识。如果你对C语言还不太了解的话&#xff0c;可以看看博主的C语言专栏哟&#xff…

Python调用go语言编译的库

要在 Python 中调用用 Go 语言编写的库&#xff0c;可以使用 Go 语言的 cgo 特性将 Go 代码编译成共享库&#xff08;如 .so 文件&#xff09;&#xff0c;然后在 Python 中通过 ctypes 或 cffi 模块加载和调用这个共享库。 新建main.go文件&#xff0c;使用go语言编写如下代码…

学成在线_内容管理模块_创建模块工程

学成在线模块工程 1.各个微服务依赖基础工程2.每个微服务都是一个前后端分离的项目3.xuecheng-plus-content&#xff1a;内容管理模块工程xuecheng-plus-content-modelxuecheng-plus-content-servicexuecheng-plus-content-api 1.各个微服务依赖基础工程 2.每个微服务都是一个前…

1️⃣Java中的集合体系学习汇总(List/Map/Set 详解)

目录 01. Java中的集合体系 02. 单列集合体系​ 1. Collection系列集合的遍历方式 &#xff08;1&#xff09;迭代器遍历&#xff08;2&#xff09;增强for遍历​编辑&#xff08;3&#xff09;Lambda表达式遍历 03.List集合详解 04.Set集合详解 05.总结 Collection系列…

智能科技与共情能力加持,哈曼重新定义驾乘体验

2025年1月6日&#xff0c;拉斯维加斯&#xff0c;2025年国际消费电子展——想象一下&#xff0c;当您步入一辆汽车&#xff0c;它不仅能响应您的指令&#xff0c;更能理解您的需求、适应您的偏好&#xff0c;并为您创造一个独特且专属的交互环境。作为汽车科技领域的知名企业和…

Unity中实现倒计时结束后干一些事情

问题描述&#xff1a;如果我们想实现在一个倒计时结束后可以执行某个方法&#xff0c;比如挑战成功或者挑战失败&#xff0c;或者其他什么的比如生成boss之类的功能&#xff0c;而且你又不想每次都把代码复制一遍&#xff0c;那么就可以用下面这种方法。 结构 实现步骤 创建一…