【C++杂货铺】C++11新特性——可变参数模板

在这里插入图片描述

文章目录

  • 一、可变模板参数相关概念的引入
  • 二、获取参数包中参数的个数
  • 三、递归函数方式展开参数包
  • 四、逗号表达式展开参数包
  • 五、可变模板参数的实际应用——emplace相关接口
    • 5.1 回顾一下 push_back 的三种用法
    • 5.2 emplace_back 使用方法介绍
    • 5.3 听说 emplace_back 可以提高效率?
  • 六、结语

一、可变模板参数相关概念的引入

C++11的新特性可变参数模板能够让您创建可以接受可变参数的函数模板和类模板,相比C++98/03,类模板和函数模板中只能含固定数量的模板参数,可变模板参数无疑是一个巨大的改进。然而由于可变模板参数比较抽象,使用起来需要一定的技巧,所以之一块还是比较晦涩的。本篇文章旨在帮助大家掌握一些基础的可变参数特性,足够大家使用。

相信大家对可变参数这一概念并不陌生,在 C语言阶段我们常用的 scanfprintf 它们就使用了可变参数,但它们属于函数的可变参数,和我们今天所要讲解的模板的可变参数有所不同。函数的参数传递的是对象,而模板的参数传递的是类型(非类型的模板参数除外),函数的可变参数是希望传递任意个数的对象,那模板的可变参数就是希望传递任意个数的类型。下面就是一个基本可变参数的函数模板。

template<class ...Args>
void ShowList(Args... args)
{}

其中 Args 是一个模板参数包,args 是一个函数形参参数包。声明一个参数包 Args... args,这个参数包中可以包含 0 到任意个模板参数。参数 args 前面有省略号,所以它就是一个可变模板参数,我们把带省略号的参数称为“参数包”,它里面包含了 0 到 N (N>=0)各模板参数。我们无法直接获取参数包 args 中的每个参数,只能通过展开参数包的方式来获取参数包中的每个参数,这是使用可变模板参数的一个主要特点,也是最大的难点,即如何展开可变模板参数。由于语法不支持使用 args[i] 这样的方式获取可变参数,所以我们得用一些奇招来一一获取参数包的值。

二、获取参数包中参数的个数

template<class ...Args>
void ShowList(Args... args)
{cout << sizeof...(args) << endl; // 查看参数包中的参数个数
}int main()
{ShowList(1);ShowList(1, 1.1);ShowList(1, 1.1, 'a');return 0;
}

在这里插入图片描述
可以通过 sizeof...(args) 来查看参数包中的参数个数。

三、递归函数方式展开参数包

//递归终止函数
template<class T>
void ShowList(T val)
{cout << val << endl;
}
// 可变模板参数
template<class T, class ...Args>
void ShowList(T val, Args... args)
{cout << val << " ";ShowList(args...);
}int main()
{ShowList(1);ShowList(1, 2.1);ShowList(1, 2.1, 'a');return 0;
}

在这里插入图片描述
该方法是通过递归调用 ShowList 函数去获取参数包中的参数,每递归一次就可以从参数包中取出一个参数存到形参 val 中。注意:采用这种方法获取参数包中的参数必须要重载一个仅有一个参数的同名函数,也就是递归终止函数。假如不写这个函数会出现什么问题呢?问题出现在当参数包中只有一个参数的时候,如果参数包中只剩一个参数,此时执行 ShowList(args...); ,可以调用 void ShowList(T val, Args... args) 没有任何问题,将参数包中仅存的一个参数传给第一个形参 val,此时形参 args (参数包)中没有任何东西,然后再去递归调用 ShowList(args...); 这时问题就来了,因为此时的 args 中什么都没有,所以就相当于无参调用 ShowList();,但是我们并没有重载 ShoeList 同名的无参函数,所以就会报错。当我们写了上面的递归终止函数就不会出现这样的问题,因为上面的递归终止函数中只有一个形参,因此当参数包中只剩一个参数的时候, ShowList(args...); 会去走最匹配的,也就是去调用我们写的递归终止函数,这样就可以把参数包中的最后一个参数提取出来,并且结束掉递归。通过上面的分析,我们可以得出,递归终止函数也可以重载成一个无参的同名函数,像下面这样:

// 递归终止函数
void ShowList()
{cout << endl;
}
// 可变模板参数
template<class T, class ...Args>
void ShowList(T val, Args... args)
{cout << val << " ";ShowList(args...);
}int main()
{ShowList(1);ShowList(1, 2.1);ShowList(1, 2.1, 'a');return 0;
}

在这里插入图片描述

四、逗号表达式展开参数包

template<class T>
void PrintArg(T t)
{cout << t << " ";
}// 可变模板参数
template<class ...Args>
void ShowList(Args... args)
{int arr[] = { (PrintArg(args), 0)... };cout << endl;
}int main()
{ShowList(1);ShowList(1, 2.1);ShowList(1, 2.1, 'a');return 0;
}

在这里插入图片描述
这种展开参数包的方式,不需要通过递归终止函数,是直接在 ShowList 函数体中展开的,PrintArg 不是递归终止函数,只是一个处理参数包中每一个参数的函数。这种就地展开参数包的方式实现的关键是逗号表达式。逗号表达式会按顺序执行逗号前面的表达式。ShowList 函数中的逗号表达式:(PrintArg(args), 0),也是按照这个执行顺序,先执行 PrintArg(args),再得到逗号表达式的结果0。同时还用到了 C++11 的另外一个特性——列表初始化,通过初始化列表来初始化一个边长数组,{(PrintArg(args), 0)...},将会展开成{(PrintArg(arg1), 0), (PrintArg(arg2), 0), (PrintArg(arg3), 0), etc...},最终会创建一个元素都为0的数组 int arr[sizeof...(args)]。由于是逗号表达式,在创建数组的过程中会先执行逗号表达式前面的部分 (PrintArg(args) 打印出参数,也就是说在构造 int 数组的过程中就将参数包展开了,这个数组的目的纯粹是为了在数组构造的过程中展开参数包。

五、可变模板参数的实际应用——emplace相关接口

5.1 回顾一下 push_back 的三种用法

下面我们将采用 list 容器去探究 push_backemplace_back 的用法与差异。list 中存的是 pair<int, char> 类型的对象。

  • 定义一个存储 pair<int, char> 类型对象的链表
std::list< std::pair<int, char> > mylist;
  • 方式一
std::pair<int, char> pa(1, 'a');
mylist.push_back(pa);

这种方式是最初阶的玩法,先定义一个 pair<int, char> 类型的对象 pa,此时会调用 pair 的构造函数。然后再将对象 pa 插入链表中。因为 pa 是一个左值,所以最终会调用左值引用版本的插入,即调用:void push_back (const value_type& val);

在这里插入图片描述

  • 方式二
mylist.push_back(wcy::make_pair(2, 'b'));
mylist.push_back(wcy::pair<int, char>(3, 'c'));

方式二是先调用 make_pair 函数创建一个 pair<int, char> 类型的对象,然后直接将 make_pair 函数的返回值插入到链表中,因为函数的返回值会被当做右值,所以这里最终会去调用右值引用版本的插入。即:void push_back (value_type&& val);。直接创建匿名对象进行插入的函数调用链和使用 make_pair 函数进行插入的函数调用链是一样的,因为匿名对象的生命周期就只有一行,编译器会把它识别成右值中的将亡值,因此把这两种方式归为一类。
在这里插入图片描述

  • 方式三
mylist.push_back({ 4, 'd' });

方式三的插入方式是 C++11 新增的,{4, d} 会去调用 pair 的列表初始化创建出一个 pair<int, char> 类型的对象。列表初始化本质上是 C++11 允许多参数的构造函数支持隐式类型的转化。使用列表初始化创建出来的对象生命周期也只有一行,会被编译器识别成右值,因此最终回去调用右值版本的插入,其函数调用链和方式二是一样的。

5.2 emplace_back 使用方法介绍

上面介绍的是 push_back 的使用方法,下面来介绍 emplace_back 的使用方法。

template <class... Args>
void emplace_back (Args&&... args);

emplace_backpush_back 最大的不同就在于它的参数采用了可变模板参数,这就决定了它可以接受各种类型的参数,而 push_back 的参数类型是固定的,只能是 pair<int, char> 类型,即链表中要存储的数据类型,这在链表创建的初期就已经被确定下来了。由于 emplace_back 采用的是可变模板参数,因此 push_back 的三种使用方式也同样适用于 emplace_back 这里就不再过多赘述,这里主要想给大家分享一下 emplace_back 新增的一种使用方法。

mylist.emplace_back(5, 'e');

要想搞懂 emplace——back 的原理,我们需要先理解下面这段代码:

class Date
{friend std::ostream& operator<<(std::ostream& out, const Date* date);
public:Date(int year = 1900, int month = 1, int day = 1):_year(year),_month(month),_day(day){}private:int _year;int _month;int _day;
};std::ostream& operator<<(std::ostream& out, const Date* date)
{out << date->_year << " 年 " << date->_month << " 月 " << date->_day << " 日 " << endl;return out;
}template<class...Args>
Date* CreatDate(Args...args)
{Date* date = new Date(args...);return date;
}int main()
{Date* p1 = CreatDate();Date* p2 = CreatDate(2023);Date* p3 = CreatDate(2023, 12);Date* p4 = CreatDate(2023, 12, 30);Date* p5 = CreatDate(*p3);// 最终是去调用拷贝构造cout << p1 << p2 << p3 << p4 << p5;return 0;
}

在这里插入图片描述

上面代码可以分为三个部分:日期类、CreatDate函数、主函数。这里创建日期类对象是通过 CreatDate 函数来实现的。该函数使用了可变模板参数,这样我们在主函数中调用 CreatDate 函数时可以传递任意个数的参数来创建 Date 类对象。new Date(args...) 最终是通过参数包的类型去调用构造函数或者拷贝构造函数。

mylist.emplace_back(5, 'e'); 的原理和上面的逻辑是一致的,就是将 (5, 'e') 放在一个参数包里,一层层的往下传递,最终还是去调用 pair 的普通构造函数。

在这里插入图片描述

5.3 听说 emplace_back 可以提高效率?

首先说明,所有的提高效率一般都是针对需要深拷贝的对象来说的,提高效率就是减少深拷贝的次数。因上面的实验,在 list 中存的是 pair<int, char> 类型对象,这里不涉及深拷贝,因此无法证明 emplace_back 可以提高效率。因此,这里我们对 list 存储的对象类型进行修改,让它存储一个需要进行深拷贝的对象 即 pair<int, string> 类型的对象。

int main()
{// 下面我们试一下带有拷贝构造和移动构造的bit::string,再试试呢// 我们会发现其实差别也不到,emplace_back是直接构造了,push_back// 是先构造,再移动构造,其实也还好。std::list< std::pair<int, wcy::string> > mylist;mylist.emplace_back(10, "sort");cout << "=========================" << endl;mylist.emplace_back(std::make_pair(20, "sort"));cout << "=========================" << endl;mylist.push_back(std::make_pair(30, "sort"));cout << "=========================" << endl;mylist.push_back({ 40, "sort" });return 0;
}

在这里插入图片描述
通过上面这段代码的执行结果可以看出,使用 emplace_bakce 进行插入的时候,对于需要深拷贝的对象,它会将参数包一层层的往下传,最终只调用一次普通的构造函数。而使用 push_back 进行插入的时候,会先执行一次普通构造,再调用一次移动构造。push_bakc 过程中调用普通构造是因为,push_back 函数的参数在链表创建后就是固定的,以上面的代码为例,它的 push_back 函数的参数一定是 pair<int, wcy::string> 类型的对象引用(可以是左值引用也可以是右值引用)。因此首先需要创建一个 pair<int, string> 类型的对象作为实参。其中:std::make_pair(30, "sort"){ 40, "sort" } 就是去调用普通的构造函数创建对象作为实参,通过这两条语句创建的对象叫做临时对象,因为它的生命周期就只有一行,所以这两条语句创建出来的对象会被编译器识别成右值,最终去调用右值版本的插入。在右值版本的插入过程中会执行 new Node(forward<T>(val)) 去创建节点,移动构造就是在创建节点的时候去调用的。emplace_back 可以看作只在创建节点的时候调用了一次构造函数。通过前面的分析可以看出,其实 emplace_back 并没有提高多少效率,因为 push_back 使用移动构造的代价已经足够低了。移动构造中就是进行资源的置换,一般就是指针的交换,代价并不是很大。

小Tips:总结一下,对于需要进行深拷贝的对象来说,emplace_backpush_back 的差距并不大。但是对于一个非常非常大的需要浅拷贝的对象来说,因为浅拷贝的对象一般都不会自己去写拷贝构造和移动构造,而是直接使用编译器默认生成的,这种情况下编译器默认生成的都是完成浅拷贝,那使用 push_back 会先调用一次构造再调用一次拷贝构造,前后创建了两个大对象,而 emplace_back 只会调用一次构造,只创建一个大对象。需要注意,前面说的这些都是建立在按照方式二或者方式三的方法或者使用 emplace_back 特有的方法去进行插入。

六、结语

今天的分享到这里就结束啦!如果觉得文章还不错的话,可以三连支持一下,春人的主页还有很多有趣的文章,欢迎小伙伴们前去点评,您的支持就是春人前进的动力!

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/228941.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

0101包冲突导致安装docker失败-docker-云原生

文章目录 1 前言2 报错3 解决结语 1 前言 最近在学习k8s&#xff0c;前置条件就是要安装指定版本的docker&#xff0c;命令如下 yum install -y docker-ce-20.10.7 docker-ce-cli-20.10.7 containerd.io-1.4.62 报错 file /usr/libexec/docker/cli-plugins/docker-buildx fr…

云原生|对象存储|minio分布式集群的搭建和初步使用(可用于生产)

前言&#xff1a; minio作为轻量级的对象存储服务安装还是比较简单的&#xff0c;但分布式集群可以大大提高存储的安全性&#xff0c;可靠性。分布式集群是在单实例的基础上扩展而来的 minio的分布式集群有如下要求&#xff1a; 所有运行分布式 MinIO 的节点需要具有相同的访…

【小沐学NLP】Python实现K-Means聚类算法(nltk、sklearn)

文章目录 1、简介1.1 机器学习1.2 K 均值聚类1.2.1 聚类定义1.2.2 K-Means定义1.2.3 K-Means优缺点1.2.4 K-Means算法步骤 2、测试2.1 K-Means&#xff08;Python&#xff09;2.2 K-Means&#xff08;Sklearn&#xff09;2.2.1 例子1&#xff1a;数组分类2.2.2 例子2&#xff1…

简写英语单词

题目&#xff1a; 思路&#xff1a; 这段代码的主要思路是读取一个字符串&#xff0c;然后将其中每个单词的首字母大写输出。具体来说&#xff0c;程序首先使用 fgets 函数读取一个字符串&#xff0c;然后遍历该字符串中的每个字符。当程序遇到一个字母时&#xff0c;如果此时…

职场小白培养项目管理能力的6个小技巧

有很多职场新人会碰到这样一个场景&#xff1a;入职一段时间&#xff0c;领导突然将一个重要项目的其中一个模块分配给你负责&#xff0c;但你之前并没有接触过任何项目。 这时你可能会焦躁无措&#xff0c;不知如何往下规划和开展工作&#xff0c;在推进一段时间后领导开始时…

消息中间件常见知识点

一&#xff1a;消息队列的主要作用是什么&#xff1f; 1.消息队列的特性&#xff1a; 业务无关&#xff0c;一个具有普适性质的消息队列组件不需要考虑上层的业务模型&#xff0c;只做好消息的分发就可以了&#xff0c;上层业务的不同模块反而需要依赖消息队列所定义的规范进行…

浅谈Acrel-2000MG微电网能量管理系统在新能源储能行业中的设计与应用-安科瑞 蒋静

概述:在新型电力系统中新能源装机容量逐年提高&#xff0c;但是新能源比如光伏发电、风力发电是不稳定的能源&#xff0c;所以要维持电网稳定&#xff0c;促进新能源发电的消纳&#xff0c;储能将成为至关重要的一环&#xff0c;是分布式光伏、风电等新能源消纳以及电网安全的必…

亚信安慧AntDB数据并行加载工具的实现(一)

1.概述 数据加载速度是评判数据库性能的重要指标&#xff0c;能否提高数据加载速度&#xff0c;对文件数据进行并行解析&#xff0c;直接影响数据库运维管理效率。基于此&#xff0c;AntDB分布式数据库提供了两种数据加载方式&#xff1a; 一是类似于PostgreSQL的Copy命令&am…

计算机网络物理层 习题答案及解析

2-1 下列选项中&#xff0c;不属于物理层接口规范定义范畴的是&#xff08; D &#xff09;。 A. 引脚功能 B. 接口形状 C. 信号电平 D. 传输媒体 【答案】D 【解析】 2-2 某网络在物理层规定&#xff0c;信号的电平范围为- 15V~15V &#xff0c; 电线长…

2024年AI领域的突破性进展预测

&#x1f989; AI新闻 &#x1f680; 2024年AI领域的突破性进展预测 摘要&#xff1a;23年被誉为生成式AI之年&#xff0c;24年AI有哪些新突破&#xff1f;GPT-5发布后&#xff0c;LLM在本质上仍然有限&#xff0c;基本的AGI也不足以实现。然而&#xff0c;英伟达高级科学家和…

【Unity引擎技术整合】 Unity学习路线 | 知识汇总 | 持续更新 | 保持乐趣 | 共同成长

前言 本文对Unity引擎的知识进行了一个整理总结&#xff0c;基本包含了Unity中大部分的知识介绍。网上也有很多Unity相关的学习资料&#xff0c;但大多数都不成体系&#xff0c;学起来的时候难免会东奔西走的摸不着头脑。本文整理的多数文章都是有对应的系列性文章专栏&#x…

linux休眠机制介绍

一、概述 Linux系统提供了休眠和低功耗模式&#xff0c;可以帮助节省电力和延长电池寿命&#xff0c;休眠对应的另外一种模式就是唤醒。 二、常用的休眠方式 常用的休眠方式有freeze,standby, mem, disk&#xff0c;hibernate freeze: 冻结所有的进程&#xff0c;包括用户空…

HTML进阶

列表、表格、表单 文章目录 列表、表格、表单01-列表无序列表有序列表定义列表 02-表格表格结构标签-了解合并单元格 03-表单input 标签input 标签占位文本单选框上传文件多选框下拉菜单文本域label 标签按钮 04-语义化无语义的布局标签有语义的布局标签 05-字符实体 01-列表 …

vue中的内置指令v-model的作用和常见使用方法以及自定义组件上的用法

一、v-model是什么 v-model是Vue框架的一种内置的API指令&#xff0c;本质是一种语法糖写法&#xff0c;它负责监听用户的输入事件以更新数据&#xff0c;并对一些极端场景进行一些特殊处理。在Vue中&#xff0c;v-model是用于在表单元素和组件之间创建双向数据绑定的指令。它…

第二节 linux操作系统安装与配置

一&#xff1a;Vmware虚拟机安装与使用   ①VMware是一个虚拟PC的软件&#xff0c;可以在现有的操作系统上虚拟出一个新的硬件环境&#xff0c;相当于模拟出一台新的PC &#xff0c;以此来实现在一台机器上真正同时运行多个独立的操作系统。   ②VMware主要特点&#xff1a…

初识RabbitMQ

1.什么是MQ&#xff1f; MQ翻译为消息队列&#xff0c;通过典型的生产者和消费者模型&#xff0c;生产者不断向消息队列中生产消息&#xff0c;消费者不断的从队列中获取消息。因为消息的生产和消费都是异步的&#xff0c;而且只关心消息的发送和接收&#xff0c;没有业务逻辑的…

m1芯片电脑上的paragon15如何安装激活 m1芯片电脑上ntfs for mac如何安装

Paragon NTFS软件在M1芯片电脑上安装之后&#xff0c;最后一步会让我们“允许加载第三方内核扩展”&#xff0c;具体如下图所示。 图1&#xff1a;允许加载第三方内核扩展 按照图中提示“单击此处“&#xff0c;然后打开安全与隐私。接下来依次点击小锁标志进行解锁&#xff0c…

uni-app 前后端调用实例 基于Springboot 下拉刷新实现

锋哥原创的uni-app视频教程&#xff1a; 2023版uniapp从入门到上天视频教程(Java后端无废话版)&#xff0c;火爆更新中..._哔哩哔哩_bilibili2023版uniapp从入门到上天视频教程(Java后端无废话版)&#xff0c;火爆更新中...共计23条视频&#xff0c;包括&#xff1a;第1讲 uni…

java 纯代码导出pdf合并单元格

java 纯代码导出pdf合并单元格 接上篇博客 java导出pdf&#xff08;纯代码实现&#xff09; 后有一部分猿友叫我提供一下源码&#xff0c;实际上我的源码已经贴在帖子上了&#xff0c;都是同样的步骤&#xff0c;只是加多一点设置就可以了。今天我再次上传一下相对情况比较完整…

Vue2中使用echarts,并从后端获取数据同步

一、安装echarts npm install echarts -S 二、导入echarts 在script中导入&#xff0c;比如&#xff1a; import * as echarts from "echarts"; 三、查找要用的示例 比如柱状图 四、初始化并挂载 <template><div id"total-orders-chart" s…