主页:HABUO🍁主页:HABUO
🍁YOLOv8入门+改进专栏🍁
🍁如果再也不能见到你,祝你早安,午安,晚安🍁
【YOLOv8改进系列】:
【YOLOv8】YOLOv8结构解读
YOLOv8改进系列(1)----替换主干网络之EfficientViT
目录
💯一、FasterNet介绍
1.1 简介
核心创新点
Partial Convolution(PConv,部分卷积)
2. FasterNet架构
实验结果
关键贡献
💯二、网络结构
编辑
💯三、具体添加方法
第①步:创建FasterNet.py
第②步:修改task.py
(1) 引入创建的efficientViT文件
(2)修改_predict_once函数
(3)修改parse_model函数
第③步:yolov8.yaml文件修改
第④步:验证是否加入成功
💯一、FasterNet介绍
- 论文题目:《EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention》
- 论文地址:Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks
- 源码地址:github.com
1.1 简介
神经网络在计算机视觉任务(如图像分类、目标检测和分割)中取得了显著的性能提升,但随着应用的普及,对低延迟和高吞吐量的需求也日益增加。为了实现更快的神经网络,研究者们通常通过减少浮点运算次数(FLOPs)来降低计算复杂度。然而,论文指出,单纯减少FLOPs并不一定能显著降低延迟,因为许多网络在运行时受到内存访问效率的限制,导致实际的浮点运算速度(FLOPS)较低。
例如,许多轻量级网络(如MobileNets、ShuffleNets等)使用深度可分离卷积(DWConv)或分组卷积(GConv)来减少FLOPs,但这些操作会增加内存访问次数,从而降低FLOPS。此外,一些网络还会引入额外的数据操作(如拼接、洗牌和池化),这些操作在小模型中会显著增加运行时间。因此,论文的核心问题是:如何在减少FLOPs的同时,提高FLOPS,从而真正实现低延迟?
核心创新点
-
Partial Convolution(PConv,部分卷积)
- 动机:传统卷积(Conv)和深度可分离卷积(DWConv)在计算效率和内存访问上存在冗余。例如,DWConv虽减少了计算量,但未充分利用计算设备的并行能力。
- 设计思想:PConv仅对输入特征图的部分通道进行常规卷积运算(如1/4通道),其余通道保持原样。通过这种方式,减少冗余计算和内存访问次数,同时保留足够的信息提取能力。
- 技术细节:
- 部分通道处理:对输入特征图的连续或均匀分布的通道子集执行常规卷积。
- 逐点卷积补充:在PConv后接一个逐点卷积(Pointwise Conv),融合所有通道的信息。
- 优势:相比DWConv,PConv在相同计算量下能提取更丰富的空间特征,同时FLOPs和内存访问次数显著降低。
FasterNet架构
基于PConv,论文提出了一个新的神经网络家族——FasterNet。FasterNet的设计目标是在各种设备(如GPU、CPU和ARM处理器)上实现高运行速度,同时不牺牲准确性。
FasterNet架构特点
-
分层结构:FasterNet包含四个层次,每个层次由多个FasterNet块组成。每个块包含一个PConv层和两个PWConv层,形成一个倒置残差结构。
-
嵌入层和合并层:每个层次之前都有一个嵌入层(用于空间下采样)或合并层(用于通道扩展)。
-
简单高效:FasterNet的设计尽量简单,避免过多的归一化和激活层,以减少计算开销。例如,仅在中间PWConv后使用归一化和激活层。
-
多种变体:为了适应不同的计算预算,FasterNet提供了多种变体(如T0、T1、T2、S、M、L),这些变体在深度和宽度上有所不同。
实验结果
-
速度与精度平衡
- ImageNet-1K分类任务:
- 微型模型:FasterNet-T0在GPU、CPU、ARM上的推理速度分别比MobileViT-XXS快2.8×、3.3×、2.4×,同时Top-1精度提升2.9%。
- 大型模型:FasterNet-L达到83.5%的Top-1精度,与Swin-B相当,但GPU推理吞吐量提升49%,CPU计算时间减少42%。
- 下游任务:在目标检测(COCO)、语义分割(ADE20K)等任务中,FasterNet在速度和精度上均优于MobileNet、ConvNeXt等模型。
- ImageNet-1K分类任务:
-
硬件适应性
- 针对边缘设备(如ARM处理器)优化,显著降低内存占用和计算延迟,适合实时应用场景(如移动端图像处理)。
关键贡献
-
理论突破
- 提出计算效率(FLOPS)与模型速度的非线性关系,指出单纯降低FLOPs可能无法充分利用硬件算力,需优化实际计算密度。
- 通过实验证明,更高的FLOPS(合理设计下)可带来更快的实际推理速度。
-
工程价值
- PConv模块:可作为即插即用组件,替代传统卷积或DWConv,提升现有模型的效率。
- 开源实现:提供了FasterNet的代码和预训练模型,推动高效神经网络的实际部署。
💯二、网络结构
YOLOv8结构
修改后结构:
💯三、具体添加方法
第①步:创建FasterNet.py
创建完成后,将下面代码直接复制粘贴进去:
import torch, yaml
import torch.nn as nn
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from functools import partial
from typing import List
from torch import Tensor
import copy
import os
import numpy as np__all__ = ['fasternet_t0', 'fasternet_t1', 'fasternet_t2', 'fasternet_s', 'fasternet_m', 'fasternet_l']class Partial_conv3(nn.Module):def __init__(self, dim, n_div, forward):super().__init__()self.dim_conv3 = dim // n_divself.dim_untouched = dim - self.dim_conv3self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False)if forward == 'slicing':self.forward = self.forward_slicingelif forward == 'split_cat':self.forward = self.forward_split_catelse:raise NotImplementedErrordef forward_slicing(self, x: Tensor) -> Tensor:# only for inferencex = x.clone() # !!! Keep the original input intact for the residual connection laterx[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])return xdef forward_split_cat(self, x: Tensor) -> Tensor:# for training/inferencex1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)x1 = self.partial_conv3(x1)x = torch.cat((x1, x2), 1)return xclass MLPBlock(nn.Module):def __init__(self,dim,n_div,mlp_ratio,drop_path,layer_scale_init_value,act_layer,norm_layer,pconv_fw_type):super().__init__()self.dim = dimself.mlp_ratio = mlp_ratioself.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()self.n_div = n_divmlp_hidden_dim = int(dim * mlp_ratio)mlp_layer: List[nn.Module] = [nn.Conv2d(dim, mlp_hidden_dim, 1, bias=False),norm_layer(mlp_hidden_dim),act_layer(),nn.Conv2d(mlp_hidden_dim, dim, 1, bias=False)]self.mlp = nn.Sequential(*mlp_layer)self.spatial_mixing = Partial_conv3(dim,n_div,pconv_fw_type)if layer_scale_init_value > 0:self.layer_scale = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)self.forward = self.forward_layer_scaleelse:self.forward = self.forwarddef forward(self, x: Tensor) -> Tensor:shortcut = xx = self.spatial_mixing(x)x = shortcut + self.drop_path(self.mlp(x))return xdef forward_layer_scale(self, x: Tensor) -> Tensor:shortcut = xx = self.spatial_mixing(x)x = shortcut + self.drop_path(self.layer_scale.unsqueeze(-1).unsqueeze(-1) * self.mlp(x))return xclass BasicStage(nn.Module):def __init__(self,dim,depth,n_div,mlp_ratio,drop_path,layer_scale_init_value,norm_layer,act_layer,pconv_fw_type):super().__init__()blocks_list = [MLPBlock(dim=dim,n_div=n_div,mlp_ratio=mlp_ratio,drop_path=drop_path[i],layer_scale_init_value=layer_scale_init_value,norm_layer=norm_layer,act_layer=act_layer,pconv_fw_type=pconv_fw_type)for i in range(depth)]self.blocks = nn.Sequential(*blocks_list)def forward(self, x: Tensor) -> Tensor:x = self.blocks(x)return xclass PatchEmbed(nn.Module):def __init__(self, patch_size, patch_stride, in_chans, embed_dim, norm_layer):super().__init__()self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_stride, bias=False)if norm_layer is not None:self.norm = norm_layer(embed_dim)else:self.norm = nn.Identity()def forward(self, x: Tensor) -> Tensor:x = self.norm(self.proj(x))return xclass PatchMerging(nn.Module):def __init__(self, patch_size2, patch_stride2, dim, norm_layer):super().__init__()self.reduction = nn.Conv2d(dim, 2 * dim, kernel_size=patch_size2, stride=patch_stride2, bias=False)if norm_layer is not None:self.norm = norm_layer(2 * dim)else:self.norm = nn.Identity()def forward(self, x: Tensor) -> Tensor:x = self.norm(self.reduction(x))return xclass FasterNet(nn.Module):def __init__(self,in_chans=3,num_classes=1000,embed_dim=96,depths=(1, 2, 8, 2),mlp_ratio=2.,n_div=4,patch_size=4,patch_stride=4,patch_size2=2, # for subsequent layerspatch_stride2=2,patch_norm=True,feature_dim=1280,drop_path_rate=0.1,layer_scale_init_value=0,norm_layer='BN',act_layer='RELU',init_cfg=None,pretrained=None,pconv_fw_type='split_cat',**kwargs):super().__init__()if norm_layer == 'BN':norm_layer = nn.BatchNorm2delse:raise NotImplementedErrorif act_layer == 'GELU':act_layer = nn.GELUelif act_layer == 'RELU':act_layer = partial(nn.ReLU, inplace=True)else:raise NotImplementedErrorself.num_stages = len(depths)self.embed_dim = embed_dimself.patch_norm = patch_normself.num_features = int(embed_dim * 2 ** (self.num_stages - 1))self.mlp_ratio = mlp_ratioself.depths = depths# split image into non-overlapping patchesself.patch_embed = PatchEmbed(patch_size=patch_size,patch_stride=patch_stride,in_chans=in_chans,embed_dim=embed_dim,norm_layer=norm_layer if self.patch_norm else None)# stochastic depth decay ruledpr = [x.item()for x in torch.linspace(0, drop_path_rate, sum(depths))]# build layersstages_list = []for i_stage in range(self.num_stages):stage = BasicStage(dim=int(embed_dim * 2 ** i_stage),n_div=n_div,depth=depths[i_stage],mlp_ratio=self.mlp_ratio,drop_path=dpr[sum(depths[:i_stage]):sum(depths[:i_stage + 1])],layer_scale_init_value=layer_scale_init_value,norm_layer=norm_layer,act_layer=act_layer,pconv_fw_type=pconv_fw_type)stages_list.append(stage)# patch merging layerif i_stage < self.num_stages - 1:stages_list.append(PatchMerging(patch_size2=patch_size2,patch_stride2=patch_stride2,dim=int(embed_dim * 2 ** i_stage),norm_layer=norm_layer))self.stages = nn.Sequential(*stages_list)# add a norm layer for each outputself.out_indices = [0, 2, 4, 6]for i_emb, i_layer in enumerate(self.out_indices):if i_emb == 0 and os.environ.get('FORK_LAST3', None):raise NotImplementedErrorelse:layer = norm_layer(int(embed_dim * 2 ** i_emb))layer_name = f'norm{i_layer}'self.add_module(layer_name, layer)self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]def forward(self, x: Tensor) -> Tensor:# output the features of four stages for dense predictionx = self.patch_embed(x)outs = []for idx, stage in enumerate(self.stages):x = stage(x)if idx in self.out_indices:norm_layer = getattr(self, f'norm{idx}')x_out = norm_layer(x)outs.append(x_out)return outsdef update_weight(model_dict, weight_dict):idx, temp_dict = 0, {}for k, v in weight_dict.items():if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):temp_dict[k] = vidx += 1model_dict.update(temp_dict)print(f'loading weights... {idx}/{len(model_dict)} items')return model_dictdef fasternet_t0(weights=None, cfg='ultralytics/nn/backbone/faster_cfg/fasternet_t0.yaml'):with open(cfg) as f:cfg = yaml.load(f, Loader=yaml.SafeLoader)model = FasterNet(**cfg)if weights is not None:pretrain_weight = torch.load(weights, map_location='cpu')model.load_state_dict(update_weight(model.state_dict(), pretrain_weight))return modeldef fasternet_t1(weights=None, cfg='ultralytics/nn/backbone/faster_cfg/fasternet_t1.yaml'):with open(cfg) as f:cfg = yaml.load(f, Loader=yaml.SafeLoader)model = FasterNet(**cfg)if weights is not None:pretrain_weight = torch.load(weights, map_location='cpu')model.load_state_dict(update_weight(model.state_dict(), pretrain_weight))return modeldef fasternet_t2(weights=None, cfg='ultralytics/nn/backbone/faster_cfg/fasternet_t2.yaml'):with open(cfg) as f:cfg = yaml.load(f, Loader=yaml.SafeLoader)model = FasterNet(**cfg)if weights is not None:pretrain_weight = torch.load(weights, map_location='cpu')model.load_state_dict(update_weight(model.state_dict(), pretrain_weight))return modeldef fasternet_s(weights=None, cfg='ultralytics/nn/backbone/faster_cfgg/fasternet_s.yaml'):with open(cfg) as f:cfg = yaml.load(f, Loader=yaml.SafeLoader)model = FasterNet(**cfg)if weights is not None:pretrain_weight = torch.load(weights, map_location='cpu')model.load_state_dict(update_weight(model.state_dict(), pretrain_weight))return modeldef fasternet_m(weights=None, cfg='ultralytics/nn/backbone/faster_cfg/fasternet_m.yaml'):with open(cfg) as f:cfg = yaml.load(f, Loader=yaml.SafeLoader)model = FasterNet(**cfg)if weights is not None:pretrain_weight = torch.load(weights, map_location='cpu')model.load_state_dict(update_weight(model.state_dict(), pretrain_weight))return modeldef fasternet_l(weights=None, cfg='ultralytics/nn/backbone/faster_cfg/fasternet_l.yaml'):with open(cfg) as f:cfg = yaml.load(f, Loader=yaml.SafeLoader)model = FasterNet(**cfg)if weights is not None:pretrain_weight = torch.load(weights, map_location='cpu')model.load_state_dict(update_weight(model.state_dict(), pretrain_weight))return modelif __name__ == '__main__':import yamlmodel = fasternet_t0(weights='fasternet_t0-epoch.281-val_acc1.71.9180.pth', cfg='cfg/fasternet_t0.yaml')print(model.channel)inputs = torch.randn((1, 3, 640, 640))for i in model(inputs):print(i.size())
第②步:修改task.py
(1) 引入创建的efficientViT文件
from ultralytics.nn.backbone.fasternet import *
(2)修改_predict_once函数
def _predict_once(self, x, profile=False, visualize=False, embed=None):"""Perform a forward pass through the network.Args:x (torch.Tensor): The input tensor to the model.profile (bool): Print the computation time of each layer if True, defaults to False.visualize (bool): Save the feature maps of the model if True, defaults to False.embed (list, optional): A list of feature vectors/embeddings to return.Returns:(torch.Tensor): The last output of the model."""y, dt, embeddings = [], [], [] # outputsfor idx, m in enumerate(self.model):if m.f != -1: # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layersif profile:self._profile_one_layer(m, x, dt)if hasattr(m, 'backbone'):x = m(x)for _ in range(5 - len(x)):x.insert(0, None)for i_idx, i in enumerate(x):if i_idx in self.save:y.append(i)else:y.append(None)# print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x if x_ is not None])}')x = x[-1]else:x = m(x) # runy.append(x if m.i in self.save else None) # save output# if type(x) in {list, tuple}:# if idx == (len(self.model) - 1):# if type(x[1]) is dict:# print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x[1]["one2one"]])}')# else:# print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x[1]])}')# else:# print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x if x_ is not None])}')# elif type(x) is dict:# print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x["one2one"]])}')# else:# if not hasattr(m, 'backbone'):# print(f'layer id:{idx:>2} {m.type:>50} output shape:{x.size()}')if visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)if embed and m.i in embed:embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)) # flattenif m.i == max(embed):return torch.unbind(torch.cat(embeddings, 1), dim=0)return x
(3)修改parse_model函数
可以直接把下面的代码粘贴到对应的位置中,后续的改进中,对应的模块就不需要做出改变,有改变处,后续会另有说明
def parse_model(d, ch, verbose=True, warehouse_manager=None): # model_dict, input_channels(3)"""Parse a YOLO model.yaml dictionary into a PyTorch model."""import ast# Argsmax_channels = float("inf")nc, act, scales = (d.get(x) for x in ("nc", "activation", "scales"))depth, width, kpt_shape = (d.get(x, 1.0) for x in ("depth_multiple", "width_multiple", "kpt_shape"))if scales:scale = d.get("scale")if not scale:scale = tuple(scales.keys())[0]LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")if len(scales[scale]) == 3:depth, width, max_channels = scales[scale]elif len(scales[scale]) == 4:depth, width, max_channels, threshold = scales[scale]if act:Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()if verbose:LOGGER.info(f"{colorstr('activation:')} {act}") # printif verbose:LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10} {'module':<60}{'arguments':<50}")ch = [ch]layers, save, c2 = [], [], ch[-1] # layers, savelist, ch outis_backbone = Falsefor i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, argstry:if m == 'node_mode':m = d[m]if len(args) > 0:if args[0] == 'head_channel':args[0] = int(d[args[0]])t = mm = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m] # get moduleexcept:passfor j, a in enumerate(args):if isinstance(a, str):with contextlib.suppress(ValueError):try:args[j] = locals()[a] if a in locals() else ast.literal_eval(a)except:args[j] = an = n_ = max(round(n * depth), 1) if n > 1 else n # depth gainif m in {Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, BottleneckCSP, C1, C2, C2f, ELAN1, AConv, SPPELAN, C2fAttn, C3, C3TR, C3Ghost, nn.Conv2d, nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3, PSA, SCDown, C2fCIB, C2f_Faster, C2f_ODConv,C2f_Faster_EMA, C2f_DBB, GSConv, GSConvns, VoVGSCSP, VoVGSCSPns, VoVGSCSPC, C2f_CloAtt, C3_CloAtt, SCConv, C2f_SCConv, C3_SCConv, C2f_ScConv, C3_ScConv,C3_EMSC, C3_EMSCP, C2f_EMSC, C2f_EMSCP, RCSOSA, KWConv, C2f_KW, C3_KW, DySnakeConv, C2f_DySnakeConv, C3_DySnakeConv,DCNv2, C3_DCNv2, C2f_DCNv2, DCNV3_YOLO, C3_DCNv3, C2f_DCNv3, C3_Faster, C3_Faster_EMA, C3_ODConv,OREPA, OREPA_LargeConv, RepVGGBlock_OREPA, C3_OREPA, C2f_OREPA, C3_DBB, C3_REPVGGOREPA, C2f_REPVGGOREPA,C3_DCNv2_Dynamic, C2f_DCNv2_Dynamic, C3_ContextGuided, C2f_ContextGuided, C3_MSBlock, C2f_MSBlock,C3_DLKA, C2f_DLKA, CSPStage, SPDConv, RepBlock, C3_EMBC, C2f_EMBC, SPPF_LSKA, C3_DAttention, C2f_DAttention,C3_Parc, C2f_Parc, C3_DWR, C2f_DWR, RFAConv, RFCAConv, RFCBAMConv, C3_RFAConv, C2f_RFAConv,C3_RFCBAMConv, C2f_RFCBAMConv, C3_RFCAConv, C2f_RFCAConv, C3_FocusedLinearAttention, C2f_FocusedLinearAttention,C3_AKConv, C2f_AKConv, AKConv, C3_MLCA, C2f_MLCA,C3_UniRepLKNetBlock, C2f_UniRepLKNetBlock, C3_DRB, C2f_DRB, C3_DWR_DRB, C2f_DWR_DRB, CSP_EDLAN,C3_AggregatedAtt, C2f_AggregatedAtt, DCNV4_YOLO, C3_DCNv4, C2f_DCNv4, HWD, SEAM,C3_SWC, C2f_SWC, C3_iRMB, C2f_iRMB, C3_iRMB_Cascaded, C2f_iRMB_Cascaded, C3_iRMB_DRB, C2f_iRMB_DRB, C3_iRMB_SWC, C2f_iRMB_SWC,C3_VSS, C2f_VSS, C3_LVMB, C2f_LVMB, RepNCSPELAN4, DBBNCSPELAN4, OREPANCSPELAN4, DRBNCSPELAN4, ADown, V7DownSampling,C3_DynamicConv, C2f_DynamicConv, C3_GhostDynamicConv, C2f_GhostDynamicConv, C3_RVB, C2f_RVB, C3_RVB_SE, C2f_RVB_SE, C3_RVB_EMA, C2f_RVB_EMA, DGCST,C3_RetBlock, C2f_RetBlock, C3_PKIModule, C2f_PKIModule, RepNCSPELAN4_CAA, C3_FADC, C2f_FADC, C3_PPA, C2f_PPA, SRFD, DRFD, RGCSPELAN,C3_Faster_CGLU, C2f_Faster_CGLU, C3_Star, C2f_Star, C3_Star_CAA, C2f_Star_CAA, C3_KAN, C2f_KAN, C3_EIEM, C2f_EIEM, C3_DEConv, C2f_DEConv,C3_SMPCGLU, C2f_SMPCGLU, C3_Heat, C2f_Heat, CSP_PTB, SimpleStem, VisionClueMerge, VSSBlock_YOLO, XSSBlock, GLSA, C2f_WTConv, WTConv2d, FeaturePyramidSharedConv,C2f_FMB, LDConv, C2f_gConv, C2f_WDBB, C2f_DeepDBB, C2f_AdditiveBlock, C2f_AdditiveBlock_CGLU, CSP_MSCB, C2f_MSMHSA_CGLU, CSP_PMSFA, C2f_MogaBlock,C2f_SHSA, C2f_SHSA_CGLU, C2f_SMAFB, C2f_SMAFB_CGLU, C2f_IdentityFormer, C2f_RandomMixing, C2f_PoolingFormer, C2f_ConvFormer, C2f_CaFormer,C2f_IdentityFormerCGLU, C2f_RandomMixingCGLU, C2f_PoolingFormerCGLU, C2f_ConvFormerCGLU, C2f_CaFormerCGLU, CSP_MutilScaleEdgeInformationEnhance, C2f_FFCM,C2f_SFHF, CSP_FreqSpatial, C2f_MSM, C2f_RAB, C2f_HDRAB, C2f_LFE, CSP_MutilScaleEdgeInformationSelect, C2f_SFA, C2f_CTA, C2f_CAMixer, MANet,MANet_FasterBlock, MANet_FasterCGLU, MANet_Star, C2f_HFERB, C2f_DTAB, C2f_ETB, C2f_JDPM, C2f_AP, PSConv, C2f_Kat, C2f_Faster_KAN, C2f_Strip, C2f_StripCGLU}:if args[0] == 'head_channel':args[0] = d[args[0]]c1, c2 = ch[f], args[0]if c2 != nc: # if c2 not equal to number of classes (i.e. for Classify() output)c2 = make_divisible(min(c2, max_channels) * width, 8)if m is C2fAttn:args[1] = make_divisible(min(args[1], max_channels // 2) * width, 8) # embed channelsargs[2] = int(max(round(min(args[2], max_channels // 2 // 32)) * width, 1) if args[2] > 1 else args[2]) # num headsargs = [c1, c2, *args[1:]]if m in (KWConv, C2f_KW, C3_KW):args.insert(2, f'layer{i}')args.insert(2, warehouse_manager)if m in (DySnakeConv,):c2 = c2 * 3if m in (RepNCSPELAN4, DBBNCSPELAN4, OREPANCSPELAN4, DRBNCSPELAN4, RepNCSPELAN4_CAA):args[2] = make_divisible(min(args[2], max_channels) * width, 8)args[3] = make_divisible(min(args[3], max_channels) * width, 8)if m in {BottleneckCSP, C1, C2, C2f, C2fAttn, C3, C3TR, C3Ghost, C3x, RepC3, C2fCIB, C2f_Faster, C2f_ODConv, C2f_Faster_EMA, C2f_DBB,VoVGSCSP, VoVGSCSPns, VoVGSCSPC, C2f_CloAtt, C3_CloAtt, C2f_SCConv, C3_SCConv, C2f_ScConv, C3_ScConv,C3_EMSC, C3_EMSCP, C2f_EMSC, C2f_EMSCP, RCSOSA, C2f_KW, C3_KW, C2f_DySnakeConv, C3_DySnakeConv,C3_DCNv2, C2f_DCNv2, C3_DCNv3, C2f_DCNv3, C3_Faster, C3_Faster_EMA, C3_ODConv, C3_OREPA, C2f_OREPA, C3_DBB,C3_REPVGGOREPA, C2f_REPVGGOREPA, C3_DCNv2_Dynamic, C2f_DCNv2_Dynamic, C3_ContextGuided, C2f_ContextGuided, C3_MSBlock, C2f_MSBlock, C3_DLKA, C2f_DLKA, CSPStage, RepBlock, C3_EMBC, C2f_EMBC, C3_DAttention, C2f_DAttention,C3_Parc, C2f_Parc, C3_DWR, C2f_DWR, C3_RFAConv, C2f_RFAConv, C3_RFCBAMConv, C2f_RFCBAMConv, C3_RFCAConv, C2f_RFCAConv,C3_FocusedLinearAttention, C2f_FocusedLinearAttention, C3_AKConv, C2f_AKConv, C3_MLCA, C2f_MLCA,C3_UniRepLKNetBlock, C2f_UniRepLKNetBlock, C3_DRB, C2f_DRB, C3_DWR_DRB, C2f_DWR_DRB, CSP_EDLAN,C3_AggregatedAtt, C2f_AggregatedAtt, C3_DCNv4, C2f_DCNv4, C3_SWC, C2f_SWC,C3_iRMB, C2f_iRMB, C3_iRMB_Cascaded, C2f_iRMB_Cascaded, C3_iRMB_DRB, C2f_iRMB_DRB, C3_iRMB_SWC, C2f_iRMB_SWC,C3_VSS, C2f_VSS, C3_LVMB, C2f_LVMB, C3_DynamicConv, C2f_DynamicConv, C3_GhostDynamicConv, C2f_GhostDynamicConv,C3_RVB, C2f_RVB, C3_RVB_SE, C2f_RVB_SE, C3_RVB_EMA, C2f_RVB_EMA, C3_RetBlock, C2f_RetBlock, C3_PKIModule, C2f_PKIModule,C3_FADC, C2f_FADC, C3_PPA, C2f_PPA, RGCSPELAN, C3_Faster_CGLU, C2f_Faster_CGLU, C3_Star, C2f_Star, C3_Star_CAA, C2f_Star_CAA,C3_KAN, C2f_KAN, C3_EIEM, C2f_EIEM, C3_DEConv, C2f_DEConv, C3_SMPCGLU, C2f_SMPCGLU, C3_Heat, C2f_Heat, CSP_PTB, XSSBlock, C2f_WTConv,C2f_FMB, C2f_gConv, C2f_WDBB, C2f_DeepDBB, C2f_AdditiveBlock, C2f_AdditiveBlock_CGLU, CSP_MSCB, C2f_MSMHSA_CGLU, CSP_PMSFA, C2f_MogaBlock,C2f_SHSA, C2f_SHSA_CGLU, C2f_SMAFB, C2f_SMAFB_CGLU, C2f_IdentityFormer, C2f_RandomMixing, C2f_PoolingFormer, C2f_ConvFormer, C2f_CaFormer,C2f_IdentityFormerCGLU, C2f_RandomMixingCGLU, C2f_PoolingFormerCGLU, C2f_ConvFormerCGLU, C2f_CaFormerCGLU, CSP_MutilScaleEdgeInformationEnhance, C2f_FFCM,C2f_SFHF, CSP_FreqSpatial, C2f_MSM, C2f_RAB, C2f_HDRAB, C2f_LFE, CSP_MutilScaleEdgeInformationSelect, C2f_SFA, C2f_CTA, C2f_CAMixer, MANet,MANet_FasterBlock, MANet_FasterCGLU, MANet_Star, C2f_HFERB, C2f_DTAB, C2f_ETB, C2f_JDPM, C2f_AP, C2f_Kat, C2f_Faster_KAN, C2f_Strip, C2f_StripCGLU}:args.insert(2, n) # number of repeatsn = 1elif m in {AIFI, AIFI_RepBN}:args = [ch[f], *args]c2 = args[0]elif m in (HGStem, HGBlock, Ghost_HGBlock, Rep_HGBlock, Dynamic_HGBlock, EIEStem):c1, cm, c2 = ch[f], args[0], args[1]if c2 != nc: # if c2 not equal to number of classes (i.e. for Classify() output)c2 = make_divisible(min(c2, max_channels) * width, 8)cm = make_divisible(min(cm, max_channels) * width, 8)args = [c1, cm, c2, *args[2:]]if m in (HGBlock, Ghost_HGBlock, Rep_HGBlock, Dynamic_HGBlock):args.insert(4, n) # number of repeatsn = 1elif m is ResNetLayer:c2 = args[1] if args[3] else args[1] * 4elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)elif m in ((WorldDetect, ImagePoolingAttn) + DETECT_CLASS + V10_DETECT_CLASS + SEGMENT_CLASS + POSE_CLASS + OBB_CLASS):args.append([ch[x] for x in f])if m in SEGMENT_CLASS:args[2] = make_divisible(min(args[2], max_channels) * width, 8)if m in (Segment_LSCD, Segment_TADDH, Segment_LSCSBD, Segment_LSDECD, Segment_RSCD):args[3] = make_divisible(min(args[3], max_channels) * width, 8)if m in (Detect_LSCD, Detect_TADDH, Detect_LSCSBD, Detect_LSDECD, Detect_RSCD, v10Detect_LSCD, v10Detect_TADDH, v10Detect_RSCD, v10Detect_LSDECD):args[1] = make_divisible(min(args[1], max_channels) * width, 8)if m in (Pose_LSCD, Pose_TADDH, Pose_LSCSBD, Pose_LSDECD, Pose_RSCD, OBB_LSCD, OBB_TADDH, OBB_LSCSBD, OBB_LSDECD, OBB_RSCD):args[2] = make_divisible(min(args[2], max_channels) * width, 8)elif m is RTDETRDecoder: # special case, channels arg must be passed in index 1args.insert(1, [ch[x] for x in f])elif m is Fusion:args[0] = d[args[0]]c1, c2 = [ch[x] for x in f], (sum([ch[x] for x in f]) if args[0] == 'concat' else ch[f[0]])args = [c1, args[0]]elif m is CBLinear:c2 = make_divisible(min(args[0][-1], max_channels) * width, 8)c1 = ch[f]args = [c1, [make_divisible(min(c2_, max_channels) * width, 8) for c2_ in args[0]], *args[1:]]elif m is CBFuse:c2 = ch[f[-1]]elif isinstance(m, str):t = mif len(args) == 2: m = timm.create_model(m, pretrained=args[0], pretrained_cfg_overlay={'file':args[1]}, features_only=True)elif len(args) == 1:m = timm.create_model(m, pretrained=args[0], features_only=True)c2 = m.feature_info.channels()elif m in {convnextv2_atto, convnextv2_femto, convnextv2_pico, convnextv2_nano, convnextv2_tiny, convnextv2_base, convnextv2_large, convnextv2_huge,fasternet_t0, fasternet_t1, fasternet_t2, fasternet_s, fasternet_m, fasternet_l,EfficientViT_M0, EfficientViT_M1, EfficientViT_M2, EfficientViT_M3, EfficientViT_M4, EfficientViT_M5,efficientformerv2_s0, efficientformerv2_s1, efficientformerv2_s2, efficientformerv2_l,vanillanet_5, vanillanet_6, vanillanet_7, vanillanet_8, vanillanet_9, vanillanet_10, vanillanet_11, vanillanet_12, vanillanet_13, vanillanet_13_x1_5, vanillanet_13_x1_5_ada_pool,RevCol,lsknet_t, lsknet_s,SwinTransformer_Tiny,repvit_m0_9, repvit_m1_0, repvit_m1_1, repvit_m1_5, repvit_m2_3,CSWin_tiny, CSWin_small, CSWin_base, CSWin_large,unireplknet_a, unireplknet_f, unireplknet_p, unireplknet_n, unireplknet_t, unireplknet_s, unireplknet_b, unireplknet_l, unireplknet_xl,transnext_micro, transnext_tiny, transnext_small, transnext_base,RMT_T, RMT_S, RMT_B, RMT_L,PKINET_T, PKINET_S, PKINET_B,MobileNetV4ConvSmall, MobileNetV4ConvMedium, MobileNetV4ConvLarge, MobileNetV4HybridMedium, MobileNetV4HybridLarge,starnet_s050, starnet_s100, starnet_s150, starnet_s1, starnet_s2, starnet_s3, starnet_s4}:if m is RevCol:args[1] = [make_divisible(min(k, max_channels) * width, 8) for k in args[1]]args[2] = [max(round(k * depth), 1) for k in args[2]]m = m(*args)c2 = m.channelelif m in {EMA, SpatialAttention, BiLevelRoutingAttention, BiLevelRoutingAttention_nchw,TripletAttention, CoordAtt, CBAM, BAMBlock, LSKBlock, ScConv, LAWDS, EMSConv, EMSConvP,SEAttention, CPCA, Partial_conv3, FocalModulation, EfficientAttention, MPCA, deformable_LKA,EffectiveSEModule, LSKA, SegNext_Attention, DAttention, MLCA, TransNeXt_AggregatedAttention,FocusedLinearAttention, LocalWindowAttention, ChannelAttention_HSFPN, ELA_HSFPN, CA_HSFPN, CAA_HSFPN, DySample, CARAFE, CAA, ELA, CAFM, AFGCAttention, EUCB, ContrastDrivenFeatureAggregation, FSA}:c2 = ch[f]args = [c2, *args]# print(args)elif m in {SimAM, SpatialGroupEnhance}:c2 = ch[f]elif m is ContextGuidedBlock_Down:c2 = ch[f] * 2args = [ch[f], c2, *args]elif m is BiFusion:c1 = [ch[x] for x in f]c2 = make_divisible(min(args[0], max_channels) * width, 8)args = [c1, c2]# --------------GOLD-YOLO--------------elif m in {SimFusion_4in, AdvPoolFusion}:c2 = sum(ch[x] for x in f)elif m is SimFusion_3in:c2 = args[0]if c2 != nc: # if c2 not equal to number of classes (i.e. for Classify() output)c2 = make_divisible(min(c2, max_channels) * width, 8)args = [[ch[f_] for f_ in f], c2]elif m is IFM:c1 = ch[f]c2 = sum(args[0])args = [c1, *args]elif m is InjectionMultiSum_Auto_pool:c1 = ch[f[0]]c2 = args[0]args = [c1, *args]elif m is PyramidPoolAgg:c2 = args[0]args = [sum([ch[f_] for f_ in f]), *args]elif m is TopBasicLayer:c2 = sum(args[1])# --------------GOLD-YOLO--------------# --------------ASF--------------elif m is Zoom_cat:c2 = sum(ch[x] for x in f)elif m is Add:c2 = ch[f[-1]]elif m in {ScalSeq, DynamicScalSeq}:c1 = [ch[x] for x in f]c2 = make_divisible(args[0] * width, 8)args = [c1, c2]elif m is asf_attention_model:args = [ch[f[-1]]]# --------------ASF--------------elif m is SDI:args = [[ch[x] for x in f]]elif m is Multiply:c2 = ch[f[0]]elif m is FocusFeature:c1 = [ch[x] for x in f]c2 = int(c1[1] * 0.5 * 3)args = [c1, *args]elif m is DASI:c1 = [ch[x] for x in f]args = [c1, c2]elif m is CSMHSA:c1 = [ch[x] for x in f]c2 = ch[f[-1]]args = [c1, c2]elif m is CFC_CRB:c1 = ch[f]c2 = c1 // 2args = [c1, *args]elif m is SFC_G2:c1 = [ch[x] for x in f]c2 = c1[0]args = [c1]elif m in {CGAFusion, CAFMFusion, SDFM, PSFM}:c2 = ch[f[1]]args = [c2, *args]elif m in {ContextGuideFusionModule}:c1 = [ch[x] for x in f]c2 = 2 * c1[1]args = [c1]# elif m in {PSA}:# c2 = ch[f]# args = [c2, *args]elif m in {SBA}:c1 = [ch[x] for x in f]c2 = c1[-1]args = [c1, c2]elif m in {WaveletPool}:c2 = ch[f] * 4elif m in {WaveletUnPool}:c2 = ch[f] // 4elif m in {CSPOmniKernel}:c2 = ch[f]args = [c2]elif m in {ChannelTransformer, PyramidContextExtraction}:c1 = [ch[x] for x in f]c2 = c1args = [c1]elif m in {RCM}:c2 = ch[f]args = [c2, *args]elif m in {DynamicInterpolationFusion}:c2 = ch[f[0]]args = [[ch[x] for x in f]]elif m in {FuseBlockMulti}:c2 = ch[f[0]]args = [c2]elif m in {CrossLayerChannelAttention, CrossLayerSpatialAttention}:c2 = [ch[x] for x in f]args = [c2[0], *args]elif m in {FreqFusion}:c2 = ch[f[0]]args = [[ch[x] for x in f], *args]elif m in {DynamicAlignFusion}:c2 = args[0]args = [[ch[x] for x in f], c2]elif m in {ConvEdgeFusion}:c2 = make_divisible(min(args[0], max_channels) * width, 8)args = [[ch[x] for x in f], c2]elif m in {MutilScaleEdgeInfoGenetator}:c1 = ch[f]c2 = [make_divisible(min(i, max_channels) * width, 8) for i in args[0]]args = [c1, c2]elif m in {MultiScaleGatedAttn}:c1 = [ch[x] for x in f]c2 = min(c1)args = [c1]elif m in {WFU, MultiScalePCA, MultiScalePCA_Down}:c1 = [ch[x] for x in f]c2 = c1[0]args = [c1]elif m in {GetIndexOutput}:c2 = ch[f][args[0]]elif m is HyperComputeModule:c1, c2 = ch[f], args[0]c2 = make_divisible(min(c2, max_channels) * width, 8)args = [c1, c2, threshold]else:c2 = ch[f]if isinstance(c2, list) and m not in {ChannelTransformer, PyramidContextExtraction, CrossLayerChannelAttention, CrossLayerSpatialAttention, MutilScaleEdgeInfoGenetator}:is_backbone = Truem_ = mm_.backbone = Trueelse:m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # modulet = str(m)[8:-2].replace('__main__.', '') # module typem.np = sum(x.numel() for x in m_.parameters()) # number paramsm_.i, m_.f, m_.type = i + 4 if is_backbone else i, f, t # attach index, 'from' index, typeif verbose:LOGGER.info(f"{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f} {t:<60}{str(args):<50}") # printsave.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelistlayers.append(m_)if i == 0:ch = []if isinstance(c2, list) and m not in {ChannelTransformer, PyramidContextExtraction, CrossLayerChannelAttention, CrossLayerSpatialAttention, MutilScaleEdgeInfoGenetator}:ch.extend(c2)for _ in range(5 - len(ch)):ch.insert(0, 0)else:ch.append(c2)return nn.Sequential(*layers), sorted(save)
第③步:yolov8.yaml文件修改
在下述文件夹中创立yolov8-fasternet.yaml
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPss: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPsm: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPsl: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# 0-P1/2
# 1-P2/4
# 2-P3/8
# 3-P4/16
# 4-P5/32# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, fasternet_t0, []] # 4- [-1, 1, SPPF, [1024, 5]] # 5# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 6- [[-1, 3], 1, Concat, [1]] # 7 cat backbone P4- [-1, 3, C2f, [512]] # 8- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 9- [[-1, 2], 1, Concat, [1]] # 10 cat backbone P3- [-1, 3, C2f, [256]] # 11 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]] # 12- [[-1, 8], 1, Concat, [1]] # 13 cat head P4- [-1, 3, C2f, [512]] # 14 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]] # 15- [[-1, 5], 1, Concat, [1]] # 16 cat head P5- [-1, 3, C2f, [1024]] # 17 (P5/32-large)- [[11, 14, 17], 1, Detect, [nc]] # Detect(P3, P4, P5)
第④步:验证是否加入成功
将train.py中的配置文件进行修改,并运行
🏋不是每一粒种子都能开花,但播下种子就比荒芜的旷野强百倍🏋
🍁YOLOv8入门+改进专栏🍁
【YOLOv8改进系列】:
【YOLOv8】YOLOv8结构解读
YOLOv8改进系列(1)----替换主干网络之EfficientViT