【YOLOv8】YOLOv8改进系列(2)----替换主干网络之FasterNet(CVPR 2023)

主页:HABUO🍁主页:HABUO

🍁YOLOv8入门+改进专栏🍁

🍁如果再也不能见到你,祝你早安,午安,晚安🍁


 【YOLOv8改进系列】:

【YOLOv8】YOLOv8结构解读

YOLOv8改进系列(1)----替换主干网络之EfficientViT


目录

💯一、FasterNet介绍  

1.1 简介 

核心创新点

Partial Convolution(PConv,部分卷积)

2. FasterNet架构

实验结果

关键贡献

 💯二、网络结构

​编辑

💯三、具体添加方法 

第①步:创建FasterNet.py

第②步:修改task.py  

 (1) 引入创建的efficientViT文件

(2)修改_predict_once函数 

(3)修改parse_model函数

第③步:yolov8.yaml文件修改   

 第④步:验证是否加入成功  


💯一、FasterNet介绍  

  • 论文题目:《EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention》
  • 论文地址:Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks
  • 源码地址:github.com

1.1 简介 

神经网络在计算机视觉任务(如图像分类、目标检测和分割)中取得了显著的性能提升,但随着应用的普及,对低延迟和高吞吐量的需求也日益增加。为了实现更快的神经网络,研究者们通常通过减少浮点运算次数(FLOPs)来降低计算复杂度。然而,论文指出,单纯减少FLOPs并不一定能显著降低延迟,因为许多网络在运行时受到内存访问效率的限制,导致实际的浮点运算速度(FLOPS)较低。

例如,许多轻量级网络(如MobileNets、ShuffleNets等)使用深度可分离卷积(DWConv)或分组卷积(GConv)来减少FLOPs,但这些操作会增加内存访问次数,从而降低FLOPS。此外,一些网络还会引入额外的数据操作(如拼接、洗牌和池化),这些操作在小模型中会显著增加运行时间。因此,论文的核心问题是:如何在减少FLOPs的同时,提高FLOPS,从而真正实现低延迟?

核心创新点

  1. Partial Convolution(PConv,部分卷积)

    • 动机:传统卷积(Conv)和深度可分离卷积(DWConv)在计算效率和内存访问上存在冗余。例如,DWConv虽减少了计算量,但未充分利用计算设备的并行能力。
    • 设计思想:PConv仅对输入特征图的部分通道进行常规卷积运算(如1/4通道),其余通道保持原样。通过这种方式,减少冗余计算和内存访问次数,同时保留足够的信息提取能力。
    • 技术细节
      • 部分通道处理:对输入特征图的连续或均匀分布的通道子集执行常规卷积。
      • 逐点卷积补充:在PConv后接一个逐点卷积(Pointwise Conv),融合所有通道的信息。
    • 优势:相比DWConv,PConv在相同计算量下能提取更丰富的空间特征,同时FLOPs和内存访问次数显著降低。

FasterNet架构

基于PConv,论文提出了一个新的神经网络家族——FasterNet。FasterNet的设计目标是在各种设备(如GPU、CPU和ARM处理器)上实现高运行速度,同时不牺牲准确性。

FasterNet架构特点

  • 分层结构:FasterNet包含四个层次,每个层次由多个FasterNet块组成。每个块包含一个PConv层和两个PWConv层,形成一个倒置残差结构。

  • 嵌入层和合并层:每个层次之前都有一个嵌入层(用于空间下采样)或合并层(用于通道扩展)。

  • 简单高效:FasterNet的设计尽量简单,避免过多的归一化和激活层,以减少计算开销。例如,仅在中间PWConv后使用归一化和激活层。

  • 多种变体:为了适应不同的计算预算,FasterNet提供了多种变体(如T0、T1、T2、S、M、L),这些变体在深度和宽度上有所不同。


实验结果

  1. 速度与精度平衡

    • ImageNet-1K分类任务
      • 微型模型:FasterNet-T0在GPU、CPU、ARM上的推理速度分别比MobileViT-XXS快2.8×、3.3×、2.4×,同时Top-1精度提升2.9%。
      • 大型模型:FasterNet-L达到83.5%的Top-1精度,与Swin-B相当,但GPU推理吞吐量提升49%,CPU计算时间减少42%。
    • 下游任务:在目标检测(COCO)、语义分割(ADE20K)等任务中,FasterNet在速度和精度上均优于MobileNet、ConvNeXt等模型。
  2. 硬件适应性

    • 针对边缘设备(如ARM处理器)优化,显著降低内存占用和计算延迟,适合实时应用场景(如移动端图像处理)。

关键贡献

  1. 理论突破

    • 提出计算效率(FLOPS)与模型速度的非线性关系,指出单纯降低FLOPs可能无法充分利用硬件算力,需优化实际计算密度。
    • 通过实验证明,更高的FLOPS(合理设计下)可带来更快的实际推理速度
  2. 工程价值

    • PConv模块:可作为即插即用组件,替代传统卷积或DWConv,提升现有模型的效率。
    • 开源实现:提供了FasterNet的代码和预训练模型,推动高效神经网络的实际部署。

💯二、网络结构

YOLOv8结构

修改后结构:


💯三、具体添加方法 

第①步:创建FasterNet.py

创建完成后,将下面代码直接复制粘贴进去:

import torch, yaml
import torch.nn as nn
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from functools import partial
from typing import List
from torch import Tensor
import copy
import os
import numpy as np__all__ = ['fasternet_t0', 'fasternet_t1', 'fasternet_t2', 'fasternet_s', 'fasternet_m', 'fasternet_l']class Partial_conv3(nn.Module):def __init__(self, dim, n_div, forward):super().__init__()self.dim_conv3 = dim // n_divself.dim_untouched = dim - self.dim_conv3self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False)if forward == 'slicing':self.forward = self.forward_slicingelif forward == 'split_cat':self.forward = self.forward_split_catelse:raise NotImplementedErrordef forward_slicing(self, x: Tensor) -> Tensor:# only for inferencex = x.clone()   # !!! Keep the original input intact for the residual connection laterx[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])return xdef forward_split_cat(self, x: Tensor) -> Tensor:# for training/inferencex1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)x1 = self.partial_conv3(x1)x = torch.cat((x1, x2), 1)return xclass MLPBlock(nn.Module):def __init__(self,dim,n_div,mlp_ratio,drop_path,layer_scale_init_value,act_layer,norm_layer,pconv_fw_type):super().__init__()self.dim = dimself.mlp_ratio = mlp_ratioself.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()self.n_div = n_divmlp_hidden_dim = int(dim * mlp_ratio)mlp_layer: List[nn.Module] = [nn.Conv2d(dim, mlp_hidden_dim, 1, bias=False),norm_layer(mlp_hidden_dim),act_layer(),nn.Conv2d(mlp_hidden_dim, dim, 1, bias=False)]self.mlp = nn.Sequential(*mlp_layer)self.spatial_mixing = Partial_conv3(dim,n_div,pconv_fw_type)if layer_scale_init_value > 0:self.layer_scale = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)self.forward = self.forward_layer_scaleelse:self.forward = self.forwarddef forward(self, x: Tensor) -> Tensor:shortcut = xx = self.spatial_mixing(x)x = shortcut + self.drop_path(self.mlp(x))return xdef forward_layer_scale(self, x: Tensor) -> Tensor:shortcut = xx = self.spatial_mixing(x)x = shortcut + self.drop_path(self.layer_scale.unsqueeze(-1).unsqueeze(-1) * self.mlp(x))return xclass BasicStage(nn.Module):def __init__(self,dim,depth,n_div,mlp_ratio,drop_path,layer_scale_init_value,norm_layer,act_layer,pconv_fw_type):super().__init__()blocks_list = [MLPBlock(dim=dim,n_div=n_div,mlp_ratio=mlp_ratio,drop_path=drop_path[i],layer_scale_init_value=layer_scale_init_value,norm_layer=norm_layer,act_layer=act_layer,pconv_fw_type=pconv_fw_type)for i in range(depth)]self.blocks = nn.Sequential(*blocks_list)def forward(self, x: Tensor) -> Tensor:x = self.blocks(x)return xclass PatchEmbed(nn.Module):def __init__(self, patch_size, patch_stride, in_chans, embed_dim, norm_layer):super().__init__()self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_stride, bias=False)if norm_layer is not None:self.norm = norm_layer(embed_dim)else:self.norm = nn.Identity()def forward(self, x: Tensor) -> Tensor:x = self.norm(self.proj(x))return xclass PatchMerging(nn.Module):def __init__(self, patch_size2, patch_stride2, dim, norm_layer):super().__init__()self.reduction = nn.Conv2d(dim, 2 * dim, kernel_size=patch_size2, stride=patch_stride2, bias=False)if norm_layer is not None:self.norm = norm_layer(2 * dim)else:self.norm = nn.Identity()def forward(self, x: Tensor) -> Tensor:x = self.norm(self.reduction(x))return xclass FasterNet(nn.Module):def __init__(self,in_chans=3,num_classes=1000,embed_dim=96,depths=(1, 2, 8, 2),mlp_ratio=2.,n_div=4,patch_size=4,patch_stride=4,patch_size2=2,  # for subsequent layerspatch_stride2=2,patch_norm=True,feature_dim=1280,drop_path_rate=0.1,layer_scale_init_value=0,norm_layer='BN',act_layer='RELU',init_cfg=None,pretrained=None,pconv_fw_type='split_cat',**kwargs):super().__init__()if norm_layer == 'BN':norm_layer = nn.BatchNorm2delse:raise NotImplementedErrorif act_layer == 'GELU':act_layer = nn.GELUelif act_layer == 'RELU':act_layer = partial(nn.ReLU, inplace=True)else:raise NotImplementedErrorself.num_stages = len(depths)self.embed_dim = embed_dimself.patch_norm = patch_normself.num_features = int(embed_dim * 2 ** (self.num_stages - 1))self.mlp_ratio = mlp_ratioself.depths = depths# split image into non-overlapping patchesself.patch_embed = PatchEmbed(patch_size=patch_size,patch_stride=patch_stride,in_chans=in_chans,embed_dim=embed_dim,norm_layer=norm_layer if self.patch_norm else None)# stochastic depth decay ruledpr = [x.item()for x in torch.linspace(0, drop_path_rate, sum(depths))]# build layersstages_list = []for i_stage in range(self.num_stages):stage = BasicStage(dim=int(embed_dim * 2 ** i_stage),n_div=n_div,depth=depths[i_stage],mlp_ratio=self.mlp_ratio,drop_path=dpr[sum(depths[:i_stage]):sum(depths[:i_stage + 1])],layer_scale_init_value=layer_scale_init_value,norm_layer=norm_layer,act_layer=act_layer,pconv_fw_type=pconv_fw_type)stages_list.append(stage)# patch merging layerif i_stage < self.num_stages - 1:stages_list.append(PatchMerging(patch_size2=patch_size2,patch_stride2=patch_stride2,dim=int(embed_dim * 2 ** i_stage),norm_layer=norm_layer))self.stages = nn.Sequential(*stages_list)# add a norm layer for each outputself.out_indices = [0, 2, 4, 6]for i_emb, i_layer in enumerate(self.out_indices):if i_emb == 0 and os.environ.get('FORK_LAST3', None):raise NotImplementedErrorelse:layer = norm_layer(int(embed_dim * 2 ** i_emb))layer_name = f'norm{i_layer}'self.add_module(layer_name, layer)self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]def forward(self, x: Tensor) -> Tensor:# output the features of four stages for dense predictionx = self.patch_embed(x)outs = []for idx, stage in enumerate(self.stages):x = stage(x)if idx in self.out_indices:norm_layer = getattr(self, f'norm{idx}')x_out = norm_layer(x)outs.append(x_out)return outsdef update_weight(model_dict, weight_dict):idx, temp_dict = 0, {}for k, v in weight_dict.items():if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):temp_dict[k] = vidx += 1model_dict.update(temp_dict)print(f'loading weights... {idx}/{len(model_dict)} items')return model_dictdef fasternet_t0(weights=None, cfg='ultralytics/nn/backbone/faster_cfg/fasternet_t0.yaml'):with open(cfg) as f:cfg = yaml.load(f, Loader=yaml.SafeLoader)model = FasterNet(**cfg)if weights is not None:pretrain_weight = torch.load(weights, map_location='cpu')model.load_state_dict(update_weight(model.state_dict(), pretrain_weight))return modeldef fasternet_t1(weights=None, cfg='ultralytics/nn/backbone/faster_cfg/fasternet_t1.yaml'):with open(cfg) as f:cfg = yaml.load(f, Loader=yaml.SafeLoader)model = FasterNet(**cfg)if weights is not None:pretrain_weight = torch.load(weights, map_location='cpu')model.load_state_dict(update_weight(model.state_dict(), pretrain_weight))return modeldef fasternet_t2(weights=None, cfg='ultralytics/nn/backbone/faster_cfg/fasternet_t2.yaml'):with open(cfg) as f:cfg = yaml.load(f, Loader=yaml.SafeLoader)model = FasterNet(**cfg)if weights is not None:pretrain_weight = torch.load(weights, map_location='cpu')model.load_state_dict(update_weight(model.state_dict(), pretrain_weight))return modeldef fasternet_s(weights=None, cfg='ultralytics/nn/backbone/faster_cfgg/fasternet_s.yaml'):with open(cfg) as f:cfg = yaml.load(f, Loader=yaml.SafeLoader)model = FasterNet(**cfg)if weights is not None:pretrain_weight = torch.load(weights, map_location='cpu')model.load_state_dict(update_weight(model.state_dict(), pretrain_weight))return modeldef fasternet_m(weights=None, cfg='ultralytics/nn/backbone/faster_cfg/fasternet_m.yaml'):with open(cfg) as f:cfg = yaml.load(f, Loader=yaml.SafeLoader)model = FasterNet(**cfg)if weights is not None:pretrain_weight = torch.load(weights, map_location='cpu')model.load_state_dict(update_weight(model.state_dict(), pretrain_weight))return modeldef fasternet_l(weights=None, cfg='ultralytics/nn/backbone/faster_cfg/fasternet_l.yaml'):with open(cfg) as f:cfg = yaml.load(f, Loader=yaml.SafeLoader)model = FasterNet(**cfg)if weights is not None:pretrain_weight = torch.load(weights, map_location='cpu')model.load_state_dict(update_weight(model.state_dict(), pretrain_weight))return modelif __name__ == '__main__':import yamlmodel = fasternet_t0(weights='fasternet_t0-epoch.281-val_acc1.71.9180.pth', cfg='cfg/fasternet_t0.yaml')print(model.channel)inputs = torch.randn((1, 3, 640, 640))for i in model(inputs):print(i.size())

第②步:修改task.py  

(1) 引入创建的efficientViT文件

from ultralytics.nn.backbone.fasternet import *

(2)修改_predict_once函数 

    def _predict_once(self, x, profile=False, visualize=False, embed=None):"""Perform a forward pass through the network.Args:x (torch.Tensor): The input tensor to the model.profile (bool):  Print the computation time of each layer if True, defaults to False.visualize (bool): Save the feature maps of the model if True, defaults to False.embed (list, optional): A list of feature vectors/embeddings to return.Returns:(torch.Tensor): The last output of the model."""y, dt, embeddings = [], [], []  # outputsfor idx, m in enumerate(self.model):if m.f != -1:  # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layersif profile:self._profile_one_layer(m, x, dt)if hasattr(m, 'backbone'):x = m(x)for _ in range(5 - len(x)):x.insert(0, None)for i_idx, i in enumerate(x):if i_idx in self.save:y.append(i)else:y.append(None)# print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x if x_ is not None])}')x = x[-1]else:x = m(x)  # runy.append(x if m.i in self.save else None)  # save output# if type(x) in {list, tuple}:#     if idx == (len(self.model) - 1):#         if type(x[1]) is dict:#             print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x[1]["one2one"]])}')#         else:#             print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x[1]])}')#     else:#         print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x if x_ is not None])}')# elif type(x) is dict:#     print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x["one2one"]])}')# else:#     if not hasattr(m, 'backbone'):#         print(f'layer id:{idx:>2} {m.type:>50} output shape:{x.size()}')if visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)if embed and m.i in embed:embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flattenif m.i == max(embed):return torch.unbind(torch.cat(embeddings, 1), dim=0)return x

(3)修改parse_model函数

可以直接把下面的代码粘贴到对应的位置中,后续的改进中,对应的模块就不需要做出改变,有改变处,后续会另有说明

def parse_model(d, ch, verbose=True, warehouse_manager=None):  # model_dict, input_channels(3)"""Parse a YOLO model.yaml dictionary into a PyTorch model."""import ast# Argsmax_channels = float("inf")nc, act, scales = (d.get(x) for x in ("nc", "activation", "scales"))depth, width, kpt_shape = (d.get(x, 1.0) for x in ("depth_multiple", "width_multiple", "kpt_shape"))if scales:scale = d.get("scale")if not scale:scale = tuple(scales.keys())[0]LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")if len(scales[scale]) == 3:depth, width, max_channels = scales[scale]elif len(scales[scale]) == 4:depth, width, max_channels, threshold = scales[scale]if act:Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()if verbose:LOGGER.info(f"{colorstr('activation:')} {act}")  # printif verbose:LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10}  {'module':<60}{'arguments':<50}")ch = [ch]layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch outis_backbone = Falsefor i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]):  # from, number, module, argstry:if m == 'node_mode':m = d[m]if len(args) > 0:if args[0] == 'head_channel':args[0] = int(d[args[0]])t = mm = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m]  # get moduleexcept:passfor j, a in enumerate(args):if isinstance(a, str):with contextlib.suppress(ValueError):try:args[j] = locals()[a] if a in locals() else ast.literal_eval(a)except:args[j] = an = n_ = max(round(n * depth), 1) if n > 1 else n  # depth gainif m in {Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, BottleneckCSP, C1, C2, C2f, ELAN1, AConv, SPPELAN, C2fAttn, C3, C3TR, C3Ghost, nn.Conv2d, nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3, PSA, SCDown, C2fCIB, C2f_Faster, C2f_ODConv,C2f_Faster_EMA, C2f_DBB, GSConv, GSConvns, VoVGSCSP, VoVGSCSPns, VoVGSCSPC, C2f_CloAtt, C3_CloAtt, SCConv, C2f_SCConv, C3_SCConv, C2f_ScConv, C3_ScConv,C3_EMSC, C3_EMSCP, C2f_EMSC, C2f_EMSCP, RCSOSA, KWConv, C2f_KW, C3_KW, DySnakeConv, C2f_DySnakeConv, C3_DySnakeConv,DCNv2, C3_DCNv2, C2f_DCNv2, DCNV3_YOLO, C3_DCNv3, C2f_DCNv3, C3_Faster, C3_Faster_EMA, C3_ODConv,OREPA, OREPA_LargeConv, RepVGGBlock_OREPA, C3_OREPA, C2f_OREPA, C3_DBB, C3_REPVGGOREPA, C2f_REPVGGOREPA,C3_DCNv2_Dynamic, C2f_DCNv2_Dynamic, C3_ContextGuided, C2f_ContextGuided, C3_MSBlock, C2f_MSBlock,C3_DLKA, C2f_DLKA, CSPStage, SPDConv, RepBlock, C3_EMBC, C2f_EMBC, SPPF_LSKA, C3_DAttention, C2f_DAttention,C3_Parc, C2f_Parc, C3_DWR, C2f_DWR, RFAConv, RFCAConv, RFCBAMConv, C3_RFAConv, C2f_RFAConv,C3_RFCBAMConv, C2f_RFCBAMConv, C3_RFCAConv, C2f_RFCAConv, C3_FocusedLinearAttention, C2f_FocusedLinearAttention,C3_AKConv, C2f_AKConv, AKConv, C3_MLCA, C2f_MLCA,C3_UniRepLKNetBlock, C2f_UniRepLKNetBlock, C3_DRB, C2f_DRB, C3_DWR_DRB, C2f_DWR_DRB, CSP_EDLAN,C3_AggregatedAtt, C2f_AggregatedAtt, DCNV4_YOLO, C3_DCNv4, C2f_DCNv4, HWD, SEAM,C3_SWC, C2f_SWC, C3_iRMB, C2f_iRMB, C3_iRMB_Cascaded, C2f_iRMB_Cascaded, C3_iRMB_DRB, C2f_iRMB_DRB, C3_iRMB_SWC, C2f_iRMB_SWC,C3_VSS, C2f_VSS, C3_LVMB, C2f_LVMB, RepNCSPELAN4, DBBNCSPELAN4, OREPANCSPELAN4, DRBNCSPELAN4, ADown, V7DownSampling,C3_DynamicConv, C2f_DynamicConv, C3_GhostDynamicConv, C2f_GhostDynamicConv, C3_RVB, C2f_RVB, C3_RVB_SE, C2f_RVB_SE, C3_RVB_EMA, C2f_RVB_EMA, DGCST,C3_RetBlock, C2f_RetBlock, C3_PKIModule, C2f_PKIModule, RepNCSPELAN4_CAA, C3_FADC, C2f_FADC, C3_PPA, C2f_PPA, SRFD, DRFD, RGCSPELAN,C3_Faster_CGLU, C2f_Faster_CGLU, C3_Star, C2f_Star, C3_Star_CAA, C2f_Star_CAA, C3_KAN, C2f_KAN, C3_EIEM, C2f_EIEM, C3_DEConv, C2f_DEConv,C3_SMPCGLU, C2f_SMPCGLU, C3_Heat, C2f_Heat, CSP_PTB, SimpleStem, VisionClueMerge, VSSBlock_YOLO, XSSBlock, GLSA, C2f_WTConv, WTConv2d, FeaturePyramidSharedConv,C2f_FMB, LDConv, C2f_gConv, C2f_WDBB, C2f_DeepDBB, C2f_AdditiveBlock, C2f_AdditiveBlock_CGLU, CSP_MSCB, C2f_MSMHSA_CGLU, CSP_PMSFA, C2f_MogaBlock,C2f_SHSA, C2f_SHSA_CGLU, C2f_SMAFB, C2f_SMAFB_CGLU, C2f_IdentityFormer, C2f_RandomMixing, C2f_PoolingFormer, C2f_ConvFormer, C2f_CaFormer,C2f_IdentityFormerCGLU, C2f_RandomMixingCGLU, C2f_PoolingFormerCGLU, C2f_ConvFormerCGLU, C2f_CaFormerCGLU, CSP_MutilScaleEdgeInformationEnhance, C2f_FFCM,C2f_SFHF, CSP_FreqSpatial, C2f_MSM, C2f_RAB, C2f_HDRAB, C2f_LFE, CSP_MutilScaleEdgeInformationSelect, C2f_SFA, C2f_CTA, C2f_CAMixer, MANet,MANet_FasterBlock, MANet_FasterCGLU, MANet_Star, C2f_HFERB, C2f_DTAB, C2f_ETB, C2f_JDPM, C2f_AP, PSConv, C2f_Kat, C2f_Faster_KAN, C2f_Strip, C2f_StripCGLU}:if args[0] == 'head_channel':args[0] = d[args[0]]c1, c2 = ch[f], args[0]if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)c2 = make_divisible(min(c2, max_channels) * width, 8)if m is C2fAttn:args[1] = make_divisible(min(args[1], max_channels // 2) * width, 8)  # embed channelsargs[2] = int(max(round(min(args[2], max_channels // 2 // 32)) * width, 1) if args[2] > 1 else args[2])  # num headsargs = [c1, c2, *args[1:]]if m in (KWConv, C2f_KW, C3_KW):args.insert(2, f'layer{i}')args.insert(2, warehouse_manager)if m in (DySnakeConv,):c2 = c2 * 3if m in (RepNCSPELAN4, DBBNCSPELAN4, OREPANCSPELAN4, DRBNCSPELAN4, RepNCSPELAN4_CAA):args[2] = make_divisible(min(args[2], max_channels) * width, 8)args[3] = make_divisible(min(args[3], max_channels) * width, 8)if m in {BottleneckCSP, C1, C2, C2f, C2fAttn, C3, C3TR, C3Ghost, C3x, RepC3, C2fCIB, C2f_Faster, C2f_ODConv, C2f_Faster_EMA, C2f_DBB,VoVGSCSP, VoVGSCSPns, VoVGSCSPC, C2f_CloAtt, C3_CloAtt, C2f_SCConv, C3_SCConv, C2f_ScConv, C3_ScConv,C3_EMSC, C3_EMSCP, C2f_EMSC, C2f_EMSCP, RCSOSA, C2f_KW, C3_KW, C2f_DySnakeConv, C3_DySnakeConv,C3_DCNv2, C2f_DCNv2, C3_DCNv3, C2f_DCNv3, C3_Faster, C3_Faster_EMA, C3_ODConv, C3_OREPA, C2f_OREPA, C3_DBB,C3_REPVGGOREPA, C2f_REPVGGOREPA, C3_DCNv2_Dynamic, C2f_DCNv2_Dynamic, C3_ContextGuided, C2f_ContextGuided, C3_MSBlock, C2f_MSBlock, C3_DLKA, C2f_DLKA, CSPStage, RepBlock, C3_EMBC, C2f_EMBC, C3_DAttention, C2f_DAttention,C3_Parc, C2f_Parc, C3_DWR, C2f_DWR, C3_RFAConv, C2f_RFAConv, C3_RFCBAMConv, C2f_RFCBAMConv, C3_RFCAConv, C2f_RFCAConv,C3_FocusedLinearAttention, C2f_FocusedLinearAttention, C3_AKConv, C2f_AKConv, C3_MLCA, C2f_MLCA,C3_UniRepLKNetBlock, C2f_UniRepLKNetBlock, C3_DRB, C2f_DRB, C3_DWR_DRB, C2f_DWR_DRB, CSP_EDLAN,C3_AggregatedAtt, C2f_AggregatedAtt, C3_DCNv4, C2f_DCNv4, C3_SWC, C2f_SWC,C3_iRMB, C2f_iRMB, C3_iRMB_Cascaded, C2f_iRMB_Cascaded, C3_iRMB_DRB, C2f_iRMB_DRB, C3_iRMB_SWC, C2f_iRMB_SWC,C3_VSS, C2f_VSS, C3_LVMB, C2f_LVMB, C3_DynamicConv, C2f_DynamicConv, C3_GhostDynamicConv, C2f_GhostDynamicConv,C3_RVB, C2f_RVB, C3_RVB_SE, C2f_RVB_SE, C3_RVB_EMA, C2f_RVB_EMA, C3_RetBlock, C2f_RetBlock, C3_PKIModule, C2f_PKIModule,C3_FADC, C2f_FADC, C3_PPA, C2f_PPA, RGCSPELAN, C3_Faster_CGLU, C2f_Faster_CGLU, C3_Star, C2f_Star, C3_Star_CAA, C2f_Star_CAA,C3_KAN, C2f_KAN, C3_EIEM, C2f_EIEM, C3_DEConv, C2f_DEConv, C3_SMPCGLU, C2f_SMPCGLU, C3_Heat, C2f_Heat, CSP_PTB, XSSBlock, C2f_WTConv,C2f_FMB, C2f_gConv, C2f_WDBB, C2f_DeepDBB, C2f_AdditiveBlock, C2f_AdditiveBlock_CGLU, CSP_MSCB, C2f_MSMHSA_CGLU, CSP_PMSFA, C2f_MogaBlock,C2f_SHSA, C2f_SHSA_CGLU, C2f_SMAFB, C2f_SMAFB_CGLU, C2f_IdentityFormer, C2f_RandomMixing, C2f_PoolingFormer, C2f_ConvFormer, C2f_CaFormer,C2f_IdentityFormerCGLU, C2f_RandomMixingCGLU, C2f_PoolingFormerCGLU, C2f_ConvFormerCGLU, C2f_CaFormerCGLU, CSP_MutilScaleEdgeInformationEnhance, C2f_FFCM,C2f_SFHF, CSP_FreqSpatial, C2f_MSM, C2f_RAB, C2f_HDRAB, C2f_LFE, CSP_MutilScaleEdgeInformationSelect, C2f_SFA, C2f_CTA, C2f_CAMixer, MANet,MANet_FasterBlock, MANet_FasterCGLU, MANet_Star, C2f_HFERB, C2f_DTAB, C2f_ETB, C2f_JDPM, C2f_AP, C2f_Kat, C2f_Faster_KAN, C2f_Strip, C2f_StripCGLU}:args.insert(2, n)  # number of repeatsn = 1elif m in {AIFI, AIFI_RepBN}:args = [ch[f], *args]c2 = args[0]elif m in (HGStem, HGBlock, Ghost_HGBlock, Rep_HGBlock, Dynamic_HGBlock, EIEStem):c1, cm, c2 = ch[f], args[0], args[1]if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)c2 = make_divisible(min(c2, max_channels) * width, 8)cm = make_divisible(min(cm, max_channels) * width, 8)args = [c1, cm, c2, *args[2:]]if m in (HGBlock, Ghost_HGBlock, Rep_HGBlock, Dynamic_HGBlock):args.insert(4, n)  # number of repeatsn = 1elif m is ResNetLayer:c2 = args[1] if args[3] else args[1] * 4elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)elif m in ((WorldDetect, ImagePoolingAttn) + DETECT_CLASS + V10_DETECT_CLASS + SEGMENT_CLASS + POSE_CLASS + OBB_CLASS):args.append([ch[x] for x in f])if m in SEGMENT_CLASS:args[2] = make_divisible(min(args[2], max_channels) * width, 8)if m in (Segment_LSCD, Segment_TADDH, Segment_LSCSBD, Segment_LSDECD, Segment_RSCD):args[3] = make_divisible(min(args[3], max_channels) * width, 8)if m in (Detect_LSCD, Detect_TADDH, Detect_LSCSBD, Detect_LSDECD, Detect_RSCD, v10Detect_LSCD, v10Detect_TADDH, v10Detect_RSCD, v10Detect_LSDECD):args[1] = make_divisible(min(args[1], max_channels) * width, 8)if m in (Pose_LSCD, Pose_TADDH, Pose_LSCSBD, Pose_LSDECD, Pose_RSCD, OBB_LSCD, OBB_TADDH, OBB_LSCSBD, OBB_LSDECD, OBB_RSCD):args[2] = make_divisible(min(args[2], max_channels) * width, 8)elif m is RTDETRDecoder:  # special case, channels arg must be passed in index 1args.insert(1, [ch[x] for x in f])elif m is Fusion:args[0] = d[args[0]]c1, c2 = [ch[x] for x in f], (sum([ch[x] for x in f]) if args[0] == 'concat' else ch[f[0]])args = [c1, args[0]]elif m is CBLinear:c2 = make_divisible(min(args[0][-1], max_channels) * width, 8)c1 = ch[f]args = [c1, [make_divisible(min(c2_, max_channels) * width, 8) for c2_ in args[0]], *args[1:]]elif m is CBFuse:c2 = ch[f[-1]]elif isinstance(m, str):t = mif len(args) == 2:        m = timm.create_model(m, pretrained=args[0], pretrained_cfg_overlay={'file':args[1]}, features_only=True)elif len(args) == 1:m = timm.create_model(m, pretrained=args[0], features_only=True)c2 = m.feature_info.channels()elif m in {convnextv2_atto, convnextv2_femto, convnextv2_pico, convnextv2_nano, convnextv2_tiny, convnextv2_base, convnextv2_large, convnextv2_huge,fasternet_t0, fasternet_t1, fasternet_t2, fasternet_s, fasternet_m, fasternet_l,EfficientViT_M0, EfficientViT_M1, EfficientViT_M2, EfficientViT_M3, EfficientViT_M4, EfficientViT_M5,efficientformerv2_s0, efficientformerv2_s1, efficientformerv2_s2, efficientformerv2_l,vanillanet_5, vanillanet_6, vanillanet_7, vanillanet_8, vanillanet_9, vanillanet_10, vanillanet_11, vanillanet_12, vanillanet_13, vanillanet_13_x1_5, vanillanet_13_x1_5_ada_pool,RevCol,lsknet_t, lsknet_s,SwinTransformer_Tiny,repvit_m0_9, repvit_m1_0, repvit_m1_1, repvit_m1_5, repvit_m2_3,CSWin_tiny, CSWin_small, CSWin_base, CSWin_large,unireplknet_a, unireplknet_f, unireplknet_p, unireplknet_n, unireplknet_t, unireplknet_s, unireplknet_b, unireplknet_l, unireplknet_xl,transnext_micro, transnext_tiny, transnext_small, transnext_base,RMT_T, RMT_S, RMT_B, RMT_L,PKINET_T, PKINET_S, PKINET_B,MobileNetV4ConvSmall, MobileNetV4ConvMedium, MobileNetV4ConvLarge, MobileNetV4HybridMedium, MobileNetV4HybridLarge,starnet_s050, starnet_s100, starnet_s150, starnet_s1, starnet_s2, starnet_s3, starnet_s4}:if m is RevCol:args[1] = [make_divisible(min(k, max_channels) * width, 8) for k in args[1]]args[2] = [max(round(k * depth), 1) for k in args[2]]m = m(*args)c2 = m.channelelif m in {EMA, SpatialAttention, BiLevelRoutingAttention, BiLevelRoutingAttention_nchw,TripletAttention, CoordAtt, CBAM, BAMBlock, LSKBlock, ScConv, LAWDS, EMSConv, EMSConvP,SEAttention, CPCA, Partial_conv3, FocalModulation, EfficientAttention, MPCA, deformable_LKA,EffectiveSEModule, LSKA, SegNext_Attention, DAttention, MLCA, TransNeXt_AggregatedAttention,FocusedLinearAttention, LocalWindowAttention, ChannelAttention_HSFPN, ELA_HSFPN, CA_HSFPN, CAA_HSFPN, DySample, CARAFE, CAA, ELA, CAFM, AFGCAttention, EUCB, ContrastDrivenFeatureAggregation, FSA}:c2 = ch[f]args = [c2, *args]# print(args)elif m in {SimAM, SpatialGroupEnhance}:c2 = ch[f]elif m is ContextGuidedBlock_Down:c2 = ch[f] * 2args = [ch[f], c2, *args]elif m is BiFusion:c1 = [ch[x] for x in f]c2 = make_divisible(min(args[0], max_channels) * width, 8)args = [c1, c2]# --------------GOLD-YOLO--------------elif m in {SimFusion_4in, AdvPoolFusion}:c2 = sum(ch[x] for x in f)elif m is SimFusion_3in:c2 = args[0]if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)c2 = make_divisible(min(c2, max_channels) * width, 8)args = [[ch[f_] for f_ in f], c2]elif m is IFM:c1 = ch[f]c2 = sum(args[0])args = [c1, *args]elif m is InjectionMultiSum_Auto_pool:c1 = ch[f[0]]c2 = args[0]args = [c1, *args]elif m is PyramidPoolAgg:c2 = args[0]args = [sum([ch[f_] for f_ in f]), *args]elif m is TopBasicLayer:c2 = sum(args[1])# --------------GOLD-YOLO--------------# --------------ASF--------------elif m is Zoom_cat:c2 = sum(ch[x] for x in f)elif m is Add:c2 = ch[f[-1]]elif m in {ScalSeq, DynamicScalSeq}:c1 = [ch[x] for x in f]c2 = make_divisible(args[0] * width, 8)args = [c1, c2]elif m is asf_attention_model:args = [ch[f[-1]]]# --------------ASF--------------elif m is SDI:args = [[ch[x] for x in f]]elif m is Multiply:c2 = ch[f[0]]elif m is FocusFeature:c1 = [ch[x] for x in f]c2 = int(c1[1] * 0.5 * 3)args = [c1, *args]elif m is DASI:c1 = [ch[x] for x in f]args = [c1, c2]elif m is CSMHSA:c1 = [ch[x] for x in f]c2 = ch[f[-1]]args = [c1, c2]elif m is CFC_CRB:c1 = ch[f]c2 = c1 // 2args = [c1, *args]elif m is SFC_G2:c1 = [ch[x] for x in f]c2 = c1[0]args = [c1]elif m in {CGAFusion, CAFMFusion, SDFM, PSFM}:c2 = ch[f[1]]args = [c2, *args]elif m in {ContextGuideFusionModule}:c1 = [ch[x] for x in f]c2 = 2 * c1[1]args = [c1]# elif m in {PSA}:#     c2 = ch[f]#     args = [c2, *args]elif m in {SBA}:c1 = [ch[x] for x in f]c2 = c1[-1]args = [c1, c2]elif m in {WaveletPool}:c2 = ch[f] * 4elif m in {WaveletUnPool}:c2 = ch[f] // 4elif m in {CSPOmniKernel}:c2 = ch[f]args = [c2]elif m in {ChannelTransformer, PyramidContextExtraction}:c1 = [ch[x] for x in f]c2 = c1args = [c1]elif m in {RCM}:c2 = ch[f]args = [c2, *args]elif m in {DynamicInterpolationFusion}:c2 = ch[f[0]]args = [[ch[x] for x in f]]elif m in {FuseBlockMulti}:c2 = ch[f[0]]args = [c2]elif m in {CrossLayerChannelAttention, CrossLayerSpatialAttention}:c2 = [ch[x] for x in f]args = [c2[0], *args]elif m in {FreqFusion}:c2 = ch[f[0]]args = [[ch[x] for x in f], *args]elif m in {DynamicAlignFusion}:c2 = args[0]args = [[ch[x] for x in f], c2]elif m in {ConvEdgeFusion}:c2 = make_divisible(min(args[0], max_channels) * width, 8)args = [[ch[x] for x in f], c2]elif m in {MutilScaleEdgeInfoGenetator}:c1 = ch[f]c2 = [make_divisible(min(i, max_channels) * width, 8) for i in args[0]]args = [c1, c2]elif m in {MultiScaleGatedAttn}:c1 = [ch[x] for x in f]c2 = min(c1)args = [c1]elif m in {WFU, MultiScalePCA, MultiScalePCA_Down}:c1 = [ch[x] for x in f]c2 = c1[0]args = [c1]elif m in {GetIndexOutput}:c2 = ch[f][args[0]]elif m is HyperComputeModule:c1, c2 = ch[f], args[0]c2 = make_divisible(min(c2, max_channels) * width, 8)args = [c1, c2, threshold]else:c2 = ch[f]if isinstance(c2, list) and m not in {ChannelTransformer, PyramidContextExtraction, CrossLayerChannelAttention, CrossLayerSpatialAttention, MutilScaleEdgeInfoGenetator}:is_backbone = Truem_ = mm_.backbone = Trueelse:m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # modulet = str(m)[8:-2].replace('__main__.', '')  # module typem.np = sum(x.numel() for x in m_.parameters())  # number paramsm_.i, m_.f, m_.type = i + 4 if is_backbone else i, f, t  # attach index, 'from' index, typeif verbose:LOGGER.info(f"{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<60}{str(args):<50}")  # printsave.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelistlayers.append(m_)if i == 0:ch = []if isinstance(c2, list) and m not in {ChannelTransformer, PyramidContextExtraction, CrossLayerChannelAttention, CrossLayerSpatialAttention, MutilScaleEdgeInfoGenetator}:ch.extend(c2)for _ in range(5 - len(ch)):ch.insert(0, 0)else:ch.append(c2)return nn.Sequential(*layers), sorted(save)

第③步:yolov8.yaml文件修改   

在下述文件夹中创立yolov8-fasternet.yaml  

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# 0-P1/2
# 1-P2/4
# 2-P3/8
# 3-P4/16
# 4-P5/32# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, fasternet_t0, []]  # 4- [-1, 1, SPPF, [1024, 5]]  # 5# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 6- [[-1, 3], 1, Concat, [1]]  # 7 cat backbone P4- [-1, 3, C2f, [512]]  # 8- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 9- [[-1, 2], 1, Concat, [1]]  # 10 cat backbone P3- [-1, 3, C2f, [256]]  # 11 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]] # 12- [[-1, 8], 1, Concat, [1]]  # 13 cat head P4- [-1, 3, C2f, [512]]  # 14 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]] # 15- [[-1, 5], 1, Concat, [1]]  # 16 cat head P5- [-1, 3, C2f, [1024]]  # 17 (P5/32-large)- [[11, 14, 17], 1, Detect, [nc]]  # Detect(P3, P4, P5)

第④步:验证是否加入成功  

将train.py中的配置文件进行修改,并运行  


🏋不是每一粒种子都能开花,但播下种子就比荒芜的旷野强百倍🏋

🍁YOLOv8入门+改进专栏🍁


【YOLOv8改进系列】:

【YOLOv8】YOLOv8结构解读

YOLOv8改进系列(1)----替换主干网络之EfficientViT


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/22935.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux信号

目录 1. 信号的概念搞定&#xff08;输出结论&#xff0c;支撑我们的理解&#xff09; 补充知识 2.信号的产生 补充知识 3.信号的保存 4.阻塞信号 1. 信号其他相关常见概念 2. 在内核中的表示 3. sigset_t 4. 信号集操作函数 sigprocmask sigpending 5. 信号的…

NI Multisim仿真实现39计数器

功能需求 39进制计数器。 功能分析 &#xff08;1&#xff09;时钟信号产生电路&#xff1a;用555定时器产生时钟脉冲 2&#xff09;计数器&#xff1a; 用两片74160先串接起来构成一个百进制计数器&#xff1b;再用置数法接成39进制计数器。&#xff08;可用开关控制计数器…

DeepSeek R1/V3满血版——在线体验与API调用

前言&#xff1a;在人工智能的大模型发展进程中&#xff0c;每一次新模型的亮相都宛如一颗投入湖面的石子&#xff0c;激起层层波澜。如今&#xff0c;DeepSeek R1/V3 满血版强势登场&#xff0c;为大模型应用领域带来了全新的活力与变革。 本文不但介绍在线体验 DeepSeek R1/…

Android Binder机制

Binder是IPC&#xff08;进程间通信&#xff09;的一种机制&#xff0c;它允许不同的应用或系统服务在不同的进程中安全地交换数据。Binder的核心原理是基于客户端-服务器模型&#xff08;C/S架构)。 一、Binder的定义 1. Binder是Android中的一个类&#xff0c;它继承了IBind…

医疗AI领域中GPU集群训练的关键技术与实践经验探究(上)

医疗AI领域中GPU集群训练的关键技术与实践经验探究(上) 一、引言 1.1 研究背景与意义 在科技飞速发展的当下,医疗 AI 作为人工智能技术与医疗领域深度融合的产物,正引领着医疗行业的深刻变革。近年来,医疗 AI 在疾病诊断、药物研发、健康管理等诸多方面取得了显著进展,…

MariaDB 历史版本下载地址 —— 筑梦之路

MariaDB 官方yum源里面只有目前在维护的版本&#xff0c;而有时候对于老项目来说还是需要老版本的rpm包&#xff0c;国内很多镜像站都是同步的官方仓库&#xff0c;因此下载老版本也不好找&#xff0c;这里主要记录下从哪里可以下载到历史版本的MariaDB rpm包。 1. 官方归档网…

特辣的海藻!2

基础知识点 整型数字-->字符数字 方法一&#xff1a;使用Character.forDigit()方法 Character.forDigit(int num, int radix) 该方法可以将整型数字转换为对应的字符形式。radix表示进制 Tips&#xff1a; ● 需要转换的整型数字必须在 0 到 radix-1 的范围内&#xff0c;…

RoCEv2 高性能传输协议与 Lossless 无损网络

目录 文章目录 目录RoCERoCEv2 协议栈RoCEv2 需要 Lossless NetworkLossless Network 拥塞控制技术网络拥塞的原因PFC 基于优先级的流量控制PFC Deadlock&#xff08;死锁&#xff09;的问题PFC Storm&#xff08;风暴&#xff09;的问题ECN 显式拥塞通知拥塞控制ECN 拥塞控制滞…

win10把c盘docker虚拟硬盘映射迁移到别的磁盘

c盘空间本身就比较小、如果安装了docker服务后&#xff0c;安装的时候没选择其他硬盘&#xff0c;虚拟磁盘也在c盘会占用很大的空间&#xff0c;像我的就三十多个G&#xff0c;把它迁移到其他磁盘一下子节约几十G 1、先输入下面命令查看 docker 状态 wsl -l -v 2、如果没有停止…

论文笔记:Autonomy-of-Experts Model

202501 arxiv 1 intro MoE中常被忽视的一个关键问题是路由器的决策过程与专家执行之间的分离 路由器无法直接评估专家的能力&#xff0c;因此它对专家的选择基本上是没有标签的预测如果路由器做出了错误的预测&#xff0c;选择的专家可能会试图处理这些令牌&#xff0c;但未能…

deepseek 清华大学[1-5版]全集

1、文件概览 1、清华大学《DeepSeek:从入门到精通》 2、清华大学《Deepseek如何赋能职场应用?》 3、清华大学《普通人如何抓住DeepSeek红利》 4、清华大学《DeepSeekDeepResearch让科研像聊天一样简单》 5、清华大学《DeepSeek与AI幻觉》 6、天津大学《深度解读Deepseek:原理…

【Git 学习笔记_27】DIY 实战篇:利用 DeepSeek 实现 GitHub 的 GPG 秘钥创建与配置

文章目录 1 前言2 准备工作3 具体配置过程3.1. 本地生成 GPG 密钥3.2. 导出 GPG 密钥3.3. 将密钥配置到 Git 中3.4. 测试提交 4 问题排查记录5 小结与复盘 1 前言 昨天在更新我的第二个 Vim 专栏《Mastering Vim (2nd Ed.)》时遇到一个经典的 Git 操作问题&#xff1a;如何在 …

H5 火柴人科目三和GitHub获取仓库点星星的用户列表发生了艺术的碰撞

先看效果&#xff0c;代码写的比较乱&#xff0c;有待优化 效果 https://linyisonger.github.io/H5.Examples/?name./089.%E7%9C%8B%E6%98%9F%E6%98%9F%E7%9A%84%E8%88%9E%E8%80%85.html 思路 看起来很简单&#xff0c;实则也不是很难&#xff0c;就是需要思路要打开。 一…

阿里云k8s服务部署操作一指禅

文章目录 DockerFile镜像操作阿里云k8s服务部署 DockerFile # 使用 JDK 17 官方镜像 # linux架构&#xff1a;FROM --platformlinux/amd64 openjdk:17-jdk-slim # arm架构&#xff1a;openjdk:17-jdk-slim FROM --platformlinux/amd64 openjdk:17-jdk-slim# 设置工作目录 WORK…

【算法】游艇租贷

问题 ⻓江游艇俱乐部在⻓江上设置了 n 个游艇租聘站&#xff0c;游客可以在这些租聘站租 ⽤游艇&#xff0c;然后在下游的任何⼀个租聘站归还。游艇出租站 i 到 j 的租⾦为 r(i, j)&#xff0c;1 ≤i< j≤n&#xff0c;设计⼀个算法&#xff0c;计算从出租站 i 到 j 所需的…

AnythingLLM安装包下载+CUDA安装包下载地址,提升GPU性能【语义熔炉网】

一、安装包下载地址 1. AnythingLLM安装包 &#xff08;支持Windows/macOS/Linux&#xff0c;部分用户反馈需科学上网&#xff09;国内镜像备份&#xff08;含DeepSeek相关工具&#xff09;&#xff1a;www.mix688.com/118.html 2. CUDA安装包 国内镜像&#xff08;若官网访…

【大模型】蓝耘智算平台部署DeepSeek-R1大模型使用详解

目录 一、前言 二、蓝耘智算平台介绍 2.1 蓝耘智算平台是什么 2.2 平台优势 2.3 应用场景 2.4 对DeepSeek 的支持 2.4.1 DeepSeek 简介 2.4.2 DeepSeek 优势 三、蓝耘智算平台部署DeepSeek-R1操作过程 3.1 注册账号 3.1.1 余额检查 3.2 部署DeepSeek-R1 3.2.1 获取…

本地部署deepseek-r1 ollama+anythingllm

本期笔者带给大家部署一个本地私有化知识库&#xff0c;简单明了&#xff0c;直接步入主题&#xff0c;需要读者可以继续关注支持一下啊&#xff01; 目录 背景步骤 一、环境准备二、Ollama环境部署三、AnythingLLM安装 总结 开始下载应用&#xff1a; 操作系统&#xff1a…

VSCode ssh远程连接内网服务器(不能上网的内网环境的Linux服务器)的终极解决方案

VSCode ssh远程连接内网服务器&#xff08;不能上网的内网环境的Linux服务器&#xff09; 离线下载vscode-server并安装: 如果远程端不能联网可以下载包离线安装,下载 vscode-server 的 url 需要和 vscode 客户端版本的 commit-id 对应.通过 vscode 面板的帮助->关于可以获…

计算机视觉算法实战——三维重建(主页有源码)

✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨ ​ 1. 三维重建领域简介 三维重建&#xff08;3D Reconstruction&#xff09;是计算机视觉的核心任务之一&#xff0c;旨在通过多视角图像、视频…