基于GWO灰狼优化的WSN网络最优节点部署算法matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

       无线传感器网络(Wireless Sensor Network, WSN)由大量分布式传感器节点组成,用于监测物理或环境状况。节点部署是 WSN 的关键问题,合理的部署可以提高网络的覆盖范围、连通性和能量效率。灰狼优化算法(Grey Wolf Optimizer, GWO)是一种受灰狼群体捕食行为启发的元启发式优化算法,可用于解决 WSN 网络最优节点部署问题。通过GWO,实现对节点数量和节点部署坐标的优化,实现用较小的节点完成较大的部署覆盖率的目标。

2.测试软件版本以及运行结果展示

matlab2022a/matlab2024b版本运行

3.核心程序

..................................................................
% 获取最佳解并绘制优化后的节点部署
[V,I] = min(Jit1); 
Xbest = xpos(I,1:Nnode); 
Ybest = xpos(I,1+Nnode:Nnode+Nnode); 
Nbest = round(xpos(I,end));subplot(122);for i=1:Nbestfunc_cover([Xbest(i),Ybest(i)],rd,1000,'r');hold on x1_=Xbest(i)+rd*cos(w);y1_=Ybest(i)+rd*sin(w);fill(x1_,y1_,'g','FaceAlpha',0.3)plot(Xbest(i),Ybest(i),'b.');hold oni=i+1;
end
axis([0,width,0,high]);[Coverage1,Coverage2] = func_fitness(Xbest,Ybest,Nbest);
title(['优化后','WSN节点数量:',num2str(Nbest),',WSN覆盖率:',num2str(100-100*Coverage1),'%']);figure;
subplot(121);
bar([Nnode,Nbest]);
xlabel('1:优化前,  2:优化后');
ylabel('节点数量');subplot(122);
bar([100-100*Coverage1b,100-100*Coverage1]);
xlabel('1:优化前,  2:优化后');
ylabel('覆盖率%');figure;
plot(Favg);
xlabel('迭代次数');
ylabel('average J');
grid on
96

4.本算法原理

       基于灰狼优化算法(Grey Wolf Optimizer, GWO)的无线传感器网络(WSN)最优节点部署算法,通过模拟灰狼群体的社会等级制度和狩猎行为,优化传感器节点的位置以实现网络覆盖最大化或定位精度提升。

       在GWO中,将灰狼分为四个等级:α(领导者,群体的领导者,负责决策群体的行动方向,对应问题的最优解)、β(次领导者,辅助 α 狼进行决策,对应次优解)、δ(普通成员,服从 α 和 β 的指挥,对应第三优解。)和ω(底层成员,处于群体的底层,听从其他等级的命令,代表较差的解。)。α狼负责决策群体的行动方向,β狼辅助α狼进行决策,δ狼服从α和β的指挥,ω狼则处于群体的底层,听从其他等级的命令。

       灰狼在捕食过程中会逐渐包围猎物,其数学模型如下:

       在实际狩猎中,α、β和δ狼对猎物的位置有更好的判断,因此在GWO中,使用这三只狼的位置来估计猎物的位置。具体公式如下:

       在WSN节点部署问题中,目标是找到一组节点的位置,使得网络的覆盖范围最大,同时满足一定的连通性和能量约束。适应度函数用于评估每个节点部署方案的优劣,常见的适应度函数是网络的覆盖度。

在这个优化过程中,网络节点的覆盖率定义如下:

       GWO算法通过模拟灰狼的群体狩猎行为,能够在搜索空间中进行全局搜索,避免陷入局部最优解。算法的收敛因子随着迭代次数线性减小,使得算法在前期具有较强的全局搜索能力,在后期具有较强的局部搜索能力,从而加快了收敛速度。

       基于GWO的WSN网络最优节点部署算法通过模拟灰狼的群体狩猎行为,在搜索空间中寻找最优的节点部署方案,以提高网络的覆盖范围。

5.完整程序

VVV

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/23019.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

产品概念的提出

产品概念的提出 一个产品或者一个产品概念idea是怎么想到的呢?很多情况下它其实来自生活中的一些不爽、不满意、想吐槽,凡是用户抱怨的事情就是用户的强烈刚需需求是我们要去做的事情。当有了一个想法时需要弄清楚一下几个问题: 核心用户事…

3.Docker常用命令

1.Docker启动类命令 1.启动Docker systemctl start docker 2.停止Docker systemctl stop docker 3.重启Docker systemctl restart docker 4.查看Docker状态 systemctl status docker 5.设置开机自启(执行此命令后每次Linux重启后将自启动Docker) systemctl enable do…

交互编程工具之——Jupyter

Jupyter 是什么? Jupyter 是一个开源的交互式编程和数据分析工具,广泛应用于数据科学、机器学习、教育和研究领域。其核心是 Jupyter Notebook(现升级为 JupyterLab),允许用户在一个基于浏览器的界面中编写代码、运行…

使用 AIStor 和 OpenSearch 增强搜索功能

在这篇文章中,我们将探讨搜索,特别是 OpenSearch 如何帮助我们识别模式或查看不断增长的数据中的趋势。例如,如果您正在查看运营数据,如果您的服务似乎是随机的,那么您需要尽可能回溯以识别模式并找出原因。这不仅适用…

java基础学习

java基础 面向对象三大特性 特性:封装、继承、多态; 封装:对抽象的事物抽象化成一个对象,并对其对象的属性私有化,同时提供一些能被外界访问属性的方法; 继承:子类扩展新的数据域或功能&#…

MySQL | MySQL库、表的基本操作01

MySQL库、表的基本操作01 一、库操作1.1 查看数据库1.2 创建数据库1.3 选择数据库1.4 查看创建数据库的SQL语句1.5 修改数据库1.6 删除数据库 二、表操作2.1 创建数据表2.2 查看表2.3 查看表结构2.4 查看创建数据库的SQL语句2.5 修改表2.6 删除表 ⚠️MySQL版本 8.0 一、库操作…

设备唯一ID获取,支持安卓/iOS/鸿蒙Next(uni-device-id)UTS插件

设备唯一ID获取 支持安卓/iOS/鸿蒙(uni-device-id)UTS插件 介绍 获取设备唯一ID、设备唯一标识,支持安卓(AndroidId/OAID/IMEI/MEID/MacAddress/Serial/UUID/设备基础信息),iOS(Identifier/UUID),鸿蒙&am…

正点原子[第三期]Arm(iMX6U)Linux系统移植和根文件系统构建-5.3 xxx_defconfig过程

前言: 本文是根据哔哩哔哩网站上“arm(iMX6U)Linux系统移植和根文件系统构键篇”视频的学习笔记,在这里会记录下正点原子 I.MX6ULL 开发板的配套视频教程所作的实验和学习笔记内容。本文大量引用了正点原子教学视频和链接中的内容。 引用: …

力扣热题 100:哈希专题三道题详细解析(JAVA)

文章目录 一、两数之和1. 题目描述2. 示例3. 解题思路4. 代码实现(Java)5. 复杂度分析 二、字母异位词分组1. 题目描述2. 示例3. 解题思路4. 代码实现(Java)5. 复杂度分析 三、最长连续序列1. 题目描述2. 示例3. 解题思路4. 代码实…

嵌入式八股文(五)硬件电路篇

一、名词概念 1. 整流和逆变 (1)整流:整流是将交流电(AC)转变为直流电(DC)。常见的整流电路包括单向整流(二极管)、桥式整流等。 半波整流:只使用交流电的正…

AI2-THOR环境下实现机器人导航、物体定位与抓取

1. 依赖安装 pip install ai2thor pip install numpy pillow opencv-python2. 验证安装 # 运行测试脚本验证安装 test_thor.py from ai2thor.controller import Controller controller Controller(scene"FloorPlan1") controller.step(action"MoveAhead"…

Nginx(详解以及如何使用)

目录 1. 什么是Nginx? 2. 为什么使用nginx? 3. 安装nginx 3.1?安装nginx的依赖插件 3.2 下载nginx ?3.3?创建一个目录作为nginx的安装路径 ?3.4?解压 ?3.5?进入解压后的目录 3.6?指定nginx的安装路径 ?3.7?编译和安装nginx 3.8 启动nginx ?…

【自动化脚本工具】Hammerspoon (Mac)

目录 1. 介绍Hammerspoon 1. 介绍Hammerspoon This is a tool for powerful automation of OS X. At its core, Hammerspoon is just a bridge between the operating system and a Lua scripting engine. What gives Hammerspoon its power is a set of extensions that expo…

2025 PHP授权系统网站源码

2025 PHP授权系统网站源码 安装教程: PHP7.0以上 先上传源码到服务器,然后再配置伪静态, 访问域名根据操作完成安装, 然后配置伪静态规则。 Ngix伪静态规则: location / { if (!-e $request_filename) { rewrite …

Javascript网页设计案例:通过PDFLib实现一款PDF分割工具,分割方式自定义-完整源代码,开箱即用

功能预览 一、工具简介 PDF 分割工具支持以下核心功能: 拖放或上传 PDF 文件:用户可以通过拖放或点击上传 PDF 文件。两种分割模式: 指定范围:用户可以指定起始页和结束页,提取特定范围的内容。固定间距:用户可以设置间隔页数(例如每 5 页分割一次),工具会自动完成分…

基于SpringBoot的民宿管理系统的设计与实现(源码+SQL脚本+LW+部署讲解等)

专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…

调用click.getchar()时Windows PyCharm无法模拟键盘输入

文章目录 问题描述解决方案参考文献 问题描述 调用 click.getchar() 时,Windows PyCharm 无法模拟键盘输入 解决方案 Run → Edit Configurations… → Modify options → Emulate terminal in output console 参考文献 Terminal emulator | PyCharm Documentati…

hugging face---transformers包

一、前言 不同于计算机视觉的百花齐放,不同网络适用不同情况,NLP则由Transformer一统天下。transformer是2017年提出的一种基于自注意力机制的神经网络架构,transformers库是hugging face社区创造的一个py库,通过该库可以实现统一…

AI大模型学习(四): LangChain(三)

Langchain构建代理 语言模型本身无法执行动作,他们只能输出文本,代理是使用大型语言模型(LLM)作为推理引擎来确定要执行的操作以及这些操作的输入应该是什么,然后这些操作的结果可以反馈到代理中,代理将决定是否需要更多的操作,或者是否可以结束 例如:我们想要查询现在北京的…

企业知识管理平台重构数字时代知识体系与智能服务网络

内容概要 现代企业知识管理平台的演进呈现出全生命周期管理与智能服务网络构建的双重特征。通过四库体系(知识采集库、加工库、应用库、评估库)的协同运作,该系统实现了从知识沉淀、结构化处理到价值释放的完整闭环。其中,知识图…