[足式机器人]Part2 Dr. CAN学习笔记-Ch01自动控制原理

本文仅供学习使用
本文参考:
B站:DR_CAN

Dr. CAN学习笔记-Ch01自动控制原理

  • 1. 开环系统与闭环系统Open/Closed Loop System
    • 1.1 EG1: 烧水与控温水壶
    • 1.2 EG2: 蓄水与最终水位
    • 1.3 闭环控制系统
  • 2. 稳定性分析Stability
    • 2.1 序言
    • 2.2 稳定的分类
    • 2.3 稳定的对象
    • 2.4 稳定的系统
    • 2.5 系统稳定性的讨论
    • 2.6 补充内容——Transfer Function(传递函数) - nonzero Initial Condition(非零初始条件)
  • 3. 燃烧卡路里-系统分析实例
    • 3.1 数学模型
    • 3.2 比例控制 Proprotional Control
  • 4 终值定理和稳态误差Final Value Theorem & Steady State Error
  • 5 比例积分控制器Proportional-Intefral Controller
  • 6 根轨迹Root locus
    • 6.1 根的作用
    • 6.2 手绘技巧
    • 6.3 分离点/汇合点&根轨迹的几何性质
  • 7 Lead Compensator超前补偿器(调节根轨迹)
    • 7.1 Plot Rootlocus 绘制根轨迹
    • 7.2 System Performance 系统表现
    • 7.3 改善/加快收敛速度
    • 7.4 超前补偿器 Lead Comperastor
  • 8 Lag Compensator滞后补偿器
  • 9 PID控制器
  • 10 奈奎斯特稳定性判据-Nyquist Stability Criterion


1. 开环系统与闭环系统Open/Closed Loop System

1.1 EG1: 烧水与控温水壶

在这里插入图片描述

1.2 EG2: 蓄水与最终水位

在这里插入图片描述

h ˙ = q i n A − g h A R \dot{h}=\frac{q_{in}}{A}-\frac{gh}{AR} h˙=AqinARgh
A = 1 A=1 A=1. 目标: h = x → x d h=x\rightarrow x_d h=xxd —— 保持液面高度
x d = C R g , C = x d g R = u , G ( s ) = 1 S + g R x_d=\frac{CR}{g},C=\frac{x_dg}{R}=u,G\left( s \right) =\frac{1}{S+\frac{g}{R}} xd=gCR,C=Rxdg=u,G(s)=S+Rg1

1.3 闭环控制系统

在这里插入图片描述
X = D G 1 + H D G V X=\frac{DG}{1+HDG}V X=1+HDGDGV

2. 稳定性分析Stability

2.1 序言

在这里插入图片描述

2.2 稳定的分类

在这里插入图片描述

2.3 稳定的对象

明确分析对象
在这里插入图片描述
e = T a r g e t − θ e=Target\,\,-\,\,\theta e=Targetθ
Does the error converge to zero or not —— error dynamics stable or not

2.4 稳定的系统

Open loop 开环
在这里插入图片描述
Closed loop 闭环
在这里插入图片描述
EG1:
在这里插入图片描述
EG2:
在这里插入图片描述

2.5 系统稳定性的讨论

在这里插入图片描述
在这里插入图片描述

2.6 补充内容——Transfer Function(传递函数) - nonzero Initial Condition(非零初始条件)

在这里插入图片描述

3. 燃烧卡路里-系统分析实例

3.1 数学模型

在这里插入图片描述
在这里插入图片描述

3.2 比例控制 Proprotional Control

在这里插入图片描述
在这里插入图片描述

4 终值定理和稳态误差Final Value Theorem & Steady State Error

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5 比例积分控制器Proportional-Intefral Controller

消除稳态误差——设计新的控制器
在这里插入图片描述

在这里插入图片描述

6 根轨迹Root locus

6.1 根的作用

G ( s ) = s + 3 s 2 + 2 s + 4 G\left( s \right) =\frac{s+3}{s^2+2s+4} G(s)=s2+2s+4s+3
Matlab可绘制 riocus(g)
掌握根的变化规律 , 设计控制器,补偿器 : Compentator Lead Lag…

根 —— 极点

  1. 一阶系统
    在这里插入图片描述
  2. 二阶系统
    在这里插入图片描述
    在这里插入图片描述
  3. 三阶系统
    在这里插入图片描述

在这里插入图片描述

6.2 手绘技巧

Matlab可以精确绘制——手绘——掌握根的变化规律——设计控制器

根轨迹的基本形式

在这里插入图片描述
根轨迹研究的是: 当 K K K从0到 + ∞ +\infty +时,闭环系统根(极点)位置的变化规律

1 + K G ( s ) = 0 , G ( s ) = N ( s ) D ( s ) = ( s − z 1 ) ( s − z 2 ) ⋯ ( s − z m ) ( s − p 1 ) ( s − p 2 ) ⋯ ( s − p n ) 1+KG\left( s \right) =0,G\left( s \right) =\frac{N\left( s \right)}{D\left( s \right)}=\frac{\left( s-z_1 \right) \left( s-z_2 \right) \cdots \left( s-z_{\mathrm{m}} \right)}{\left( s-p_1 \right) \left( s-p_2 \right) \cdots \left( s-p_{\mathrm{n}} \right)} 1+KG(s)=0,G(s)=D(s)N(s)=(sp1)(sp2)(spn)(sz1)(sz2)(szm)

其中, z 1 ⋯ z m z_1\cdots z_{\mathrm{m}} z1zm零点 Zeros ⊙ \odot p 1 ⋯ p n p_1\cdots p_{\mathrm{n}} p1pn极点 Poles × \times ×

规则1 :共有 n n n条根轨迹, 若 n > m n>m n>m;共有 m m m条根轨迹,若 m > n m>n m>n ⇐ max ⁡ { m , n } \Leftarrow \max \left\{ m,n \right\} max{m,n}
规则2 :若 m = n m=n m=n,随着 K K K 0 → ∞ 0\rightarrow \infty 0 , 根轨迹从 G ( s ) G\left( s \right) G(s)的极点向零点移动: 1 + K G ( s ) = 0 ⇒ D ( s ) + K N ( s ) = 0 1+KG\left( s \right) =0\Rightarrow D\left( s \right) +KN\left( s \right) =0 1+KG(s)=0D(s)+KN(s)=0 K → 0 K\rightarrow 0 K0 D ( s ) = 0 D\left( s \right) =0 D(s)=0(极点); K → ∞ K\rightarrow \infty K N ( s ) = 0 N\left( s \right) =0 N(s)=0 (零点)
规则3:实轴上的根轨迹存在于从右向左第奇数个极点/零点的左边
规则4:若附属跟存在,则一定是共轭的,所以根轨迹通过实轴对称
规则5:若 n > m n>m n>m , 则有 n − m n-m nm个极点指向无穷;若 m > n m>n m>n , 则有 m − n m-n mn条根轨迹从无穷指向零点
规则6:根轨迹延渐近线移动,渐近线与实轴的交点 σ = ∑ p − ∑ z n − m \sigma =\frac{\sum{p}-\sum{z}}{n-m} σ=nmpz渐近线与实轴的夹角 θ = 2 q + 1 n − m π , q = 0 , 1 , . . . , n − m − 1 / m − n − 1 \theta =\frac{2q+1}{n-m}\pi ,q=0,1,...,n-m-1/m-n-1 θ=nm2q+1π,q=0,1,...,nm1/mn1
在这里插入图片描述

6.3 分离点/汇合点&根轨迹的几何性质

以 2nd-order system 为例:
在这里插入图片描述
Properties of Root locus
在这里插入图片描述

7 Lead Compensator超前补偿器(调节根轨迹)

在这里插入图片描述

7.1 Plot Rootlocus 绘制根轨迹

G ( s ) = 1 s ( s + 2 ) G\left( s \right) =\frac{1}{s\left( s+2 \right)} G(s)=s(s+2)1
在这里插入图片描述

7.2 System Performance 系统表现

输入Input —— δ ( t ) \delta \left( t \right) δ(t) 单位冲激

  • K K K 较小时, p 1 , p 2 p_1,p_2 p1,p2 x ( t ) = c 1 e p 1 t + c 2 e p 2 t , p 1 < 0 , p 2 < 0 x\left( t \right) =c_1e^{p_1t}+c_2e^{p_2t},p_1<0,p_2<0 x(t)=c1ep1t+c2ep2t,p1<0,p2<0
    在这里插入图片描述
  • K K K 较大时,根在复平面: p 1 , p 2 p_1,p_2 p1,p2 x ( t ) = c e − t sin ⁡ ω n t x\left( t \right) =ce^{-t}\sin \omega _{\mathrm{n}}t x(t)=cetsinωnt - 无论如何改变 K K K值,都无法改变收敛速度
    -在这里插入图片描述

7.3 改善/加快收敛速度

——改变根轨迹,希望根在 − 2 + 2 3 -2+2\sqrt{3} 2+23
G ( s ) = 1 s ( s + 2 ) G\left( s \right) =\frac{1}{s\left( s+2 \right)} G(s)=s(s+2)1
在根轨迹上的点满足: ∠ K G ( s ) = − π \angle KG\left( s \right) =-\pi KG(s)=π (零点到根的夹角和 - 极点到根的夹角和)
在这里插入图片描述

7.4 超前补偿器 Lead Comperastor

H ( s ) = s − z s − p , ∥ z ∥ < ∥ p ∥ H\left( s \right) =\frac{s-z}{s-p},\left\| z \right\| <\left\| p \right\| H(s)=spsz,z<p
在这里插入图片描述

8 Lag Compensator滞后补偿器

稳态误差入手(steady state Error)
在这里插入图片描述
误差 Error E ( s ) = R ( s ) − X ( s ) = R ( s ) − E ( s ) ⋅ K G ( s ) ⇒ E ( s ) ( 1 + K G ( s ) ) = R ( s ) ⇒ E ( s ) = 1 1 + K G ( s ) R ( s ) = R ( s ) 1 1 + K N ( s ) D ( s ) = 1 s 1 1 + K N ( s ) D ( s ) E\left( s \right) =R\left( s \right) -X\left( s \right) =R\left( s \right) -E\left( s \right) \cdot KG\left( s \right) \Rightarrow E\left( s \right) \left( 1+KG\left( s \right) \right) =R\left( s \right) \Rightarrow E\left( s \right) =\frac{1}{1+KG\left( s \right)}R\left( s \right) =R\left( s \right) \frac{1}{1+K\frac{N\left( s \right)}{D\left( s \right)}}=\frac{1}{s}\frac{1}{1+K\frac{N\left( s \right)}{D\left( s \right)}} E(s)=R(s)X(s)=R(s)E(s)KG(s)E(s)(1+KG(s))=R(s)E(s)=1+KG(s)1R(s)=R(s)1+KD(s)N(s)1=s11+KD(s)N(s)1

单位阶跃unit step R ( s ) = 1 s R\left( s \right) =\frac{1}{s} R(s)=s1
稳态误差Steady State Error——FVT终值定理
e s s = lim ⁡ t → ∞ e ( t ) = lim ⁡ s → o s E ( s ) = lim ⁡ s → o s ⋅ 1 s 1 1 + K N ( s ) D ( s ) = 1 1 + K N ( 0 ) D ( 0 ) = D ( 0 ) D ( 0 ) + K N ( 0 ) ess=\underset{t\rightarrow \infty}{\lim}e\left( t \right) =\underset{s\rightarrow o}{\lim}sE\left( s \right) =\underset{s\rightarrow o}{\lim}s\cdot \frac{1}{s}\frac{1}{1+K\frac{N\left( s \right)}{D\left( s \right)}}=\frac{1}{1+K\frac{N\left( 0 \right)}{D\left( 0 \right)}}=\frac{D\left( 0 \right)}{D\left( 0 \right) +KN\left( 0 \right)} ess=tlime(t)=solimsE(s)=solimss11+KD(s)N(s)1=1+KD(0)N(0)1=D(0)+KN(0)D(0)

在这里插入图片描述
在这里插入图片描述

9 PID控制器

P —— Proportional
I —— Integral
D —— Derivative

  • 当前误差/过去误差/误差的变化趋势
    在这里插入图片描述
  1. K p ⋅ e K_{\mathrm{p}}\cdot e Kpe:比例增益——当前误差
  2. K I ⋅ ∫ e d t K_{\mathrm{I}}\cdot \int{e}dt KIedt:积分增益——过去误差-积累
  3. K D ⋅ d e d t K_{\mathrm{D}}\cdot \frac{\mathrm{d}e}{\mathrm{d}t} KDdtde :微分增益——变化趋势 (对噪音敏感)
    L [ u ] = L [ K P ⋅ e + K I ⋅ ∫ e d t + K D ⋅ d e d t ] ⇒ U ( s ) = ( K P + K I 1 s + K D s ) ⋅ E ( s ) \mathcal{L} \left[ u \right] =\mathcal{L} \left[ K_{\mathrm{P}}\cdot e+K_{\mathrm{I}}\cdot \int{e}\mathrm{d}t+K_{\mathrm{D}}\cdot \frac{\mathrm{d}e}{\mathrm{d}t} \right] \Rightarrow U\left( s \right) =\left( K_{\mathrm{P}}+K_{\mathrm{I}}\frac{1}{s}+K_{\mathrm{D}}s \right) \cdot E\left( s \right) L[u]=L[KPe+KIedt+KDdtde]U(s)=(KP+KIs1+KDs)E(s)

PID
PD控制:提高稳定性,改善瞬态
PI控制:改善稳态误差

10 奈奎斯特稳定性判据-Nyquist Stability Criterion

在这里插入图片描述

在这里插入图片描述
Cauchy’s Argument Priciple 柯西幅角原理
在这里插入图片描述

结论: s s s平面内顺时针画一条闭合曲线 A A A B B B曲线是 A A A通过 F ( s ) F(s) F(s)后在 F ( s ) F(s) F(s)平面上的映射, A A A曲线每包含一个 F ( s ) F(s) F(s)的零点(极点), B B B曲线就绕 ( 0 , 0 ) (0,0) (0,0)点顺时针(逆时针)一圈

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/230194.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[蓝桥杯2020国赛]答疑

答疑 题目描述 有 n 位同学同时找老师答疑。每位同学都预先估计了自己答疑的时间。 老师可以安排答疑的顺序&#xff0c;同学们要依次进入老师办公室答疑。 一位同学答疑的过程如下&#xff1a; 首先进入办公室&#xff0c;编号为 i 的同学需要 si​ 毫秒的时间。然后同学问…

2020年认证杯SPSSPRO杯数学建模D题(第一阶段)让电脑桌面飞起来全过程文档及程序

2020年认证杯SPSSPRO杯数学建模 D题 让电脑桌面飞起来 原题再现&#xff1a; 对于一些必须每天使用电脑工作的白领来说&#xff0c;电脑桌面有着非常特殊的意义&#xff0c;通常一些频繁使用或者比较重要的图标会一直保留在桌面上&#xff0c;但是随着时间的推移&#xff0c;…

Java数据结构:1. 数据结构前置知识

文章目录 一、初识数据结构二、初识集合框架1. 什么是集合框架2. 集合框架的重要性3. 背后所涉及的数据结构以及算法 三、时间复杂度空间复杂度1. 算法效率2. 时间复杂度&#xff08;1&#xff09;概念&#xff08;2&#xff09;大O的渐进表示法&#xff08;3&#xff09;推导大…

捕捉“五彩斑斓的黑”:锗基短波红外相机的多种成像应用

红外处于人眼可观察范围以外&#xff0c;为我们了解未知领域提供了新的途径。红外又可以根据波段范围&#xff0c;分为短波红外、中波红外与长波红外。较短的SWIR波长——大约900nm-1700nm——与可见光范围内的光子表现相似。虽然在SWIR中目标的光谱含量不同&#xff0c;但所产…

PostgreSQL荣获DB-Engines 2023年度数据库

数据库流行度排名网站 DB-Engines 2024 年 1 月 2 日发布文章宣称&#xff0c;PostgreSQL 荣获 2023 年度数据库管理系统称号。 PostgreSQL 在过去一年中获得了比其他 417 个产品更多的流行度增长&#xff0c;因此获得了 2023 年度 DBMS。 DB-Engines 通过计算每种数据库 2024 …

Amazon CodeWhisperer 免费 AI 代码生成助手体验分享

今年上半年&#xff0c;亚马逊云科技正式推出了实时AI编程助手 Amazon CodeWhisperer&#xff0c;还提供了供所有开发人员免费使用的个人版版本。经过一段时间的体验&#xff0c;我觉得 CodeWhisperer 可以处理编程工作中遇到的很多问题&#xff0c;并且帮助开发人员提高编程效…

高德地图经纬度坐标导出工具

https://tool.xuexiareas.com/map/amap 可以导出单个点&#xff0c;也可以导出多个&#xff0c;多个点可以连成线&#xff0c;可用于前端开发时自己模拟“线“数据

【Apache Doris】自定义函数之 JAVA UDF 详解

【Apache Doris】自定义函数之 JAVA UDF 详解 一、背景说明二、原理简介三、环境信息3.1 硬件信息3.2 软件信息 四、IDE准备五、JAVA UDF开发流程5.1 源码准备5.1.1 pom.xml5.1.2 JAVA代码 5.2 mvn打包5.2.1 clean5.2.2 package 5.3 函数使用5.3.1 upload5.3.2 使用 六、注意事…

华为端口隔离高级用法经典案例

最终效果&#xff1a; pc4不能ping通pc5&#xff0c;pc5能ping通pc4 pc1不能和pc2、pc3通&#xff0c;但pc2和pc3能互通 vlan batch 2 interface Vlanif1 ip address 10.0.0.254 255.255.255.0 interface Vlanif2 ip address 192.168.2.1 255.255.255.0 interface MEth0/0/1 i…

服务器防护怎么做

随着网络攻击的日益猖獗&#xff0c;服务器安全已成为关注的焦点。如何有效防御各种网络威胁&#xff0c;确保数据安全与业务连续性&#xff0c;已成为一项迫切的需求。目前服务器所面临的主要威胁包括但不限于&#xff1a;DDoS攻击、SQL注入、跨站脚本攻击(XSS)、远程命令执行…

大模型笔记 【1】 大模型初探

以下是Andrej Karpathy一小时讲解chatgpt的笔记。 Andrej Karpathy做自动驾驶的人应该比较熟悉&#xff0c;他是李飞飞的学生。在openAI做了一年半的科学家之后&#xff0c;去了特斯拉。在Tesla AI day讲解tesla自动驾驶方案的就是他。 这里我的主要收获是两个 大模型是一个有…

七夕祭

title: 七夕祭 date: 2024-01-03 22:47:05 tags: 传送门 题目大意 解题思路 行的感兴趣的摊点或者列的感兴趣的摊点的数量能被行数或者列数整除&#xff0c;则能够实现要求。“均分”思想&#xff0c;设总感兴趣摊点数 T T T 和行数列数 n n n&#xff0c;当前感兴趣的摊点数…

三、HTML元素

一、HTML元素 HTML 文档由 HTML 元素定义。 *开始标签常被称为起始标签&#xff08;opening tag&#xff09;&#xff0c;结束标签常称为闭合标签&#xff08;closing tag&#xff09;。 二、HTML 元素语法 HTML 元素以开始标签起始。HTML 元素以结束标签终止。元素的内容是…

玩转贝启科技BQ3588C开源鸿蒙系统开发板 —— 首次运行DevEco Studio

接前一篇文章&#xff1a;玩转贝启科技BQ3588C开源鸿蒙系统开发板 —— DevEco Studio下载与安装 上一篇文章详细说明了Dev Eco Stdio的下载即安装过程&#xff0c;本回讲一下首次运行DevEco Studio的过程。 笔者电脑的操作系统是Windows 11。点击“开始菜单”&#xff0c;在弹…

Linux 如何 kill 指定的 python 进程

文章目录 写在前面一、显示python相关的进程二、找到自己想要 kill 的进程&#xff0c;执行下述指令 写在前面 自己的系统是 Ubuntu 20.04 一、显示python相关的进程 ps -ef | grep python显示结果如下 其中&#xff0c;第二列分别是各个进程的 PID 号。 二、找到自己想要…

Python搭建代理IP池实现存储IP的方法

目录 前言 1. 介绍 2. IP存储方法 2.1 存储到数据库 2.2 存储到文件 2.3 存储到内存 3. 完整代码示例 总结 前言 代理IP池是一种常用的网络爬虫技术&#xff0c;可以用于反爬虫、批量访问目标网站等场景。本文介绍了使用Python搭建代理IP池&#xff0c;并实现IP存储的…

人机交互不是人机融合智能

一、人机交互和人机融合智能是两个不同的概念 人机交互是指人类与计算机之间的信息交流和操作方式&#xff0c;包括输入和输出界面、交互技术、用户体验等方面。人机交互的目标是提供用户友好的界面和自然的交互方式&#xff0c;使人类能够与计算机更加高效地进行沟通和协作。 …

pytest conftest通过fixture实现变量共享

conftest.py scope"module" 只对当前执行的python文件 作用 pytest.fixture(scope"module") def global_variable():my_dict {}yield my_dict test_case7.py import pytestlist1 []def test_case001(global_variable):data1 123global_variable.u…

Flink版本更新汇总(1.14-1.18)

0、汇总 1.14.0 1.有界流支持 Checkpoint&#xff1b; 2.批执行模式支持 DataStream 和 Table/SQL 混合应用&#xff1b; 3.新增 Hybrid Source 功能&#xff1b; 4.新增 缓冲区去膨胀 功能&#xff1b; 5.新增 细粒度资源管理 功能&#xff1b; 6.新增 DataStream 的 Pulsar …

[DevOps-02] Code编码阶段工具

一、简要说明 在code阶段,我们需要将不同版本的代码存储到一个仓库中,常见的版本控制工具就是SVN或者Git,这里我们采用Git作为版本控制工具,GitLab作为远程仓库。 Git安装安装GitLab配置GitLab登录账户二、Git安装 Git官网 Githttps://git-scm.com/