前段时间刷短视频看到过别人用摄像头自动化监控员工上班状态,比如标注员工是不是离开了工位,在位置上是不是摸鱼。虽然是段子,但是这个是可以用识别技术实现一下,于是我在网上找,知道发现了 SlowFast,那么下面就用 SlowFast 简单测试一下视频的行为识别。
工具简介
YOLO
YOLO 是一个基于深度学习神经网络的对象识别和定位算法,前面我也用 v5s 训练了标注的扑克牌,实现了图片或视频中的点数识别,这里就跳过了。
DeepSORT
DeepSORT 是一个实现目标跟踪的算法,其使用卡尔曼滤波器预测所检测对象的运动轨迹。也就是当视频中有多个目标,算法能知道上一帧与下一帧各目标对象的匹配,从而完成平滑锁定,而不是在视频播放或记录时,检测框一闪一闪的。
SlowFast
SlowFast 是一个行为分类模型 (pytorchvideo 内置),可以通过输入视频序列和检测框信息,输出每个检测框的行为类别。所以需要借助类似 YOLO 的多目标检测模型,当然 SlowFast 也可以自行标注数据集训练,来完成自定义的行为识别。
流程
- 读取视频或者摄像头中的图片
- 通过 yolo 检测出画面的目标
- 通过 deep_sort 对目标进行跟踪
- 通过 slowfast 识别出目标的动作
- 根据识别的动作进行业务处理等
编码
整个流程下来,除了安装 slowfast 依赖 (pytorchvideo) 外,deep_sort 可以下载 github.com/wufan-tb/yo… 然后 import 到项目中。如果要实时处理摄像头的视频,可以通过采用多线程,单独开一个线程读摄像头并一秒保存一张图,再开一个线程用于处理保存的图片,最后将处理后的结果保存为视频,或者只是做一些业务操作,以下只是一个例子。
ini
复制代码
import torch
import numpy as np
import os,cv2,time,torch,random,pytorchvideo,warnings,argparse,math
warnings.filterwarnings("ignore",category=UserWarning)from pytorchvideo.transforms.functional import (uniform_temporal_subsample,short_side_scale_with_boxes,clip_boxes_to_image,)
from torchvision.transforms._functional_video import normalize
from pytorchvideo.data.ava import AvaLabeledVideoFramePaths
from pytorchvideo.models.hub import slowfast_r50_detection
from deep_sort.deep_sort import DeepSortclass MyVideoCapture:def __init__(self, source):self.cap = cv2.VideoCapture(source)self.idx = -1self.end = Falseself.stack = []def read(self):self.idx += 1ret, img = self.cap.read()if ret:self.stack.append(img)else:self.end = Truereturn ret, imgdef to_tensor(self, img):img = torch.from_numpy(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))return img.unsqueeze(0)def get_video_clip(self):assert len(self.stack) > 0, "clip length must large than 0 !"self.stack = [self.to_tensor(img) for img in self.stack]clip = torch.cat(self.stack).permute(-1, 0, 1, 2)del self.stackself.stack = []return clipdef release(self):self.cap.release()def tensor_to_numpy(tensor):img = tensor.cpu().numpy().transpose((1, 2, 0))return imgdef ava_inference_transform(clip, boxes,num_frames = 32, #if using slowfast_r50_detection, change this to 32, 4 for slow crop_size = 640, data_mean = [0.45, 0.45, 0.45], data_std = [0.225, 0.225, 0.225],slow_fast_alpha = 4, #if using slowfast_r50_detection, change this to 4, None for slow
):boxes = np.array(boxes)roi_boxes = boxes.copy()clip = uniform_temporal_subsample(clip, num_frames)clip = clip.float()clip = clip / 255.0height, width = clip.shape[2], clip.shape[3]boxes = clip_boxes_to_image(boxes, height, width)clip, boxes = short_side_scale_with_boxes(clip,size=crop_size,boxes=boxes,)clip = normalize(clip,np.array(data_mean, dtype=np.float32),np.array(data_std, dtype=np.float32),) boxes = clip_boxes_to_image(boxes, clip.shape[2], clip.shape[3])if slow_fast_alpha is not None:fast_pathway = clipslow_pathway = torch.index_select(clip,1,torch.linspace(0, clip.shape[1] - 1, clip.shape[1] // slow_fast_alpha).long())clip = [slow_pathway, fast_pathway]return clip, torch.from_numpy(boxes), roi_boxesdef plot_one_box(x, img, color=[100,100,100], text_info="None",velocity=None, thickness=1, fontsize=0.5, fontthickness=1):c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))cv2.rectangle(img, c1, c2, color, thickness, lineType=cv2.LINE_AA)t_size = cv2.getTextSize(text_info, cv2.FONT_HERSHEY_TRIPLEX, fontsize , fontthickness+2)[0]cv2.rectangle(img, c1, (c1[0] + int(t_size[0]), c1[1] + int(t_size[1]*1.45)), color, -1)cv2.putText(img, text_info, (c1[0], c1[1]+t_size[1]+2), cv2.FONT_HERSHEY_TRIPLEX, fontsize, [255,255,255], fontthickness)return imgdef deepsort_update(Tracker, pred, xywh, np_img):outputs = Tracker.update(xywh, pred[:,4:5],pred[:,5].tolist(),cv2.cvtColor(np_img,cv2.COLOR_BGR2RGB))return outputsdef save_yolopreds_tovideo(yolo_preds, id_to_ava_labels, color_map, output_video, vis=False):for i, (im, pred) in enumerate(zip(yolo_preds.ims, yolo_preds.pred)):if pred.shape[0]:for j, (*box, cls, trackid, vx, vy) in enumerate(pred):if int(cls) != 0:ava_label = ''elif trackid in id_to_ava_labels.keys():ava_label = id_to_ava_labels[trackid].split(' ')[0]else:ava_label = 'Unknow'text = '{} {} {}'.format(int(trackid),yolo_preds.names[int(cls)],ava_label)color = color_map[int(cls)]im = plot_one_box(box,im,color,text)im = im.astype(np.uint8)output_video.write(im)if vis:cv2.imshow("demo", im)def main(config):device = config.deviceimsize = config.imsize# model = torch.hub.load('D:/3code/6pytorch/opencv_demo/05_yolo_v5.6', 'yolov5s', source='local', pretrained=True).to(device)model = torch.hub.load('ultralytics/yolov5', 'yolov5l6').to(device)model.conf = config.confmodel.iou = config.ioumodel.max_det = 100if config.classes:model.classes = config.classesvideo_model = slowfast_r50_detection(True).eval().to(device)deepsort_tracker = DeepSort("deep_sort/deep_sort/deep/checkpoint/ckpt.t7")ava_labelnames,_ = AvaLabeledVideoFramePaths.read_label_map("selfutils/temp.pbtxt")coco_color_map = [[random.randint(0, 255) for _ in range(3)] for _ in range(80)]vide_save_path = config.outputvideo=cv2.VideoCapture(config.input)width,height = int(video.get(3)),int(video.get(4))video.release()outputvideo = cv2.VideoWriter(vide_save_path,cv2.VideoWriter_fourcc(*'mp4v'), 25, (width,height))print("processing...")cap = MyVideoCapture(config.input)id_to_ava_labels = {}a=time.time()while not cap.end:ret, img = cap.read()if not ret:continueyolo_preds=model([img], size=imsize)yolo_preds.files=["img.jpg"]deepsort_outputs=[]for j in range(len(yolo_preds.pred)):temp=deepsort_update(deepsort_tracker,yolo_preds.pred[j].cpu(),yolo_preds.xywh[j][:,0:4].cpu(),yolo_preds.ims[j])if len(temp)==0:temp=np.ones((0,8))deepsort_outputs.append(temp.astype(np.float32))yolo_preds.pred=deepsort_outputsif len(cap.stack) == 25:print(f"processing {cap.idx // 25}th second clips")clip = cap.get_video_clip()if yolo_preds.pred[0].shape[0]:inputs, inp_boxes, _=ava_inference_transform(clip, yolo_preds.pred[0][:,0:4], crop_size=imsize)inp_boxes = torch.cat([torch.zeros(inp_boxes.shape[0],1), inp_boxes], dim=1)if isinstance(inputs, list):inputs = [inp.unsqueeze(0).to(device) for inp in inputs]else:inputs = inputs.unsqueeze(0).to(device)with torch.no_grad():slowfaster_preds = video_model(inputs, inp_boxes.to(device))slowfaster_preds = slowfaster_preds.cpu()for tid,avalabel in zip(yolo_preds.pred[0][:,5].tolist(), np.argmax(slowfaster_preds, axis=1).tolist()):id_to_ava_labels[tid] = ava_labelnames[avalabel+1]save_yolopreds_tovideo(yolo_preds, id_to_ava_labels, coco_color_map, outputvideo, config.show)print("total cost: {:.3f} s, video length: {} s".format(time.time()-a, cap.idx / 25))cap.release()outputvideo.release()print('saved video to:', vide_save_path)if __name__=="__main__":parser = argparse.ArgumentParser()parser.add_argument('--input', type=str, default="/home/wufan/images/video/vad.mp4", help='test imgs folder or video or camera')parser.add_argument('--output', type=str, default="output.mp4", help='folder to save result imgs, can not use input folder')parser.add_argument('--imsize', type=int, default=640, help='inference size (pixels)')parser.add_argument('--conf', type=float, default=0.4, help='object confidence threshold')parser.add_argument('--iou', type=float, default=0.4, help='IOU threshold for NMS')parser.add_argument('--device', default='cuda', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')parser.add_argument('--show', action='store_true', help='show img')config = parser.parse_args()if config.input.isdigit():print("using local camera.")config.input = int(config.input)print(config)main(config)
其他
demo 中用的是网络 yolo,默认下载位置 C:\Users\Administrator/.cache\torch\hub\ultralytics_yolov5_master,而 slowfast 权重文件位置是 C:\Users\Administrator.cache\torch\hub\checkpoints\SLOWFAST_8x8_R50_DETECTION.pyth。
报错
运行执行命令,出现 AttributeError: ‘Upsample’ object has no attribute 'recompute_scale_factor’错误,根据提示,找到 torch 下的 upsampling.py,将 return F.interpolate (input, self.size, self.scale_factor, self.mode, self.align_corners,
recompute_scale_factor=self.recompute_scale_factor) 修改为
return F.interpolate(input, self.size, self.scale_factor, self.mode, self.align_corners)。