2020年认证杯SPSSPRO杯数学建模C题(第一阶段)抗击疫情,我们能做什么全过程文档及程序

2020年认证杯SPSSPRO杯数学建模

C题 抗击疫情,我们能做什么

原题再现:

  2020 年 3 月 12 日,世界卫生组织(WHO)宣布,席卷全球的冠状病毒引发的病毒性肺炎(COVID-19)是一种大流行病。世卫组织上一次宣布大流行是在 2009 年的 H1N1 流感爆发期间,该病感染了世界近四分之一的人口。但是,当时该决定因制造了不必要的恐慌而受到批评。SARS 尽管影响了 26 个国家,但仍未被认为是大流行病,MERS 也没有被认为是大流行病。世卫组织表示,大流行是“新疾病的全球传播”。对于达到大流行水平与否,当下没有定量的严格标准,也没有触发该定义的病例或死亡数量阈值。也就是说“大流行”特征所指的不是疾病的严重性,而是疾病传播的广泛程度。目前,在全球已有超过 200 个国家/地区报告了病毒感染病例。但由于各国的人口和经济情况差别较大,病毒检测能力和国家防疫政策都不尽相同,所以报告的病例是否就真实反映了病毒传播的情况? 如何能够对于疫情情况给出更加有效的量化指标,这是世卫组织非常关心的问题。
  “无症状感染者”全称是“新冠病毒无症状感染者”,指无临床症状、但呼吸道等标本新冠病毒病原学检测呈阳性者。无症状感染者可分为两种情形:一是感染者核酸检测呈阳性,经过 14 天潜伏期的观察,均无任何可自我感知或可临床识别的症状与体征,始终为无症状感染状态;二是感染者核酸检测呈阳性,采样时无任何可自我感知或可临床识别的症状与体征,但随后出现某种临床表现,即处于潜伏期的“无症状感染”状态。无症状感染者存在传染性。但传染期长短、强弱有待确定。很多人担心“无症状感染者”会成为新的传染源,那么,到底会不会呢? 部分专家认为鉴于无症状感染者的呼吸道标本能检出病原核酸,但由于无咳嗽、打喷嚏等临床症状,病原排出体外引起传播的机会较确诊病例相对少一些。另外,《英格兰医学杂志》上近日有报告说,一名感染者从未出现症状,但所释放的病毒量与出现症状的人相当。因此,也有一部分科学家猜测:一些感染者“在症状轻微或无症状时具有高度传染性”。但要强调的是,类似状况的患者规模仍不清楚。
  早在 2 月 17 日,中国疾控中心流行病学组在《中华流行病学杂志》上发表的大规模流调论文就提到,截至 2 月 11 日,中国疾控中心共收到国内报告病例 72314 例,含有 889 例无症状感染者,比例约占 1.2%。日本一个研究小组的报告称(研究论文 3 月 12 日刊登在 Eurosurveillance 杂志),对钻石公主号游轮上的 634 名新冠肺炎病例进行统计模型分析,估计无症状感染者所占比例为 17.9%。张文宏团队撰文指出,以目前部分研究为例,感染新冠病毒的人群中,无症状感染者的比例大约为 18%—31%。不过有些患者仅出现很轻微的症状,在隔离观察期间也不一定会被发现,也常常被认为是无症状。无症状感染者的识别具有一定的困难,如何快速地、准确地、最小成本地识别和判断也是世界各国非常关注的问题。
  第一阶段问题: 请你的团队通过深入的数据分析,建立合理的数学模型来解决以下问题:
  1. 建立数学模型,综合考虑人口数、感染数量、病死人数、疫情持续时间、经济状况、医疗条件、人口密度、防疫政策等因素,给出一个合理的界定“流行”(Epidemic) 和“大流行”(Pandemic) 病的定量条件。
  2. 考虑到无症状感染者具有一定的传染性,且不容易发现,但全民进行病毒检测又成本太高,且时间过长,不利于复工复产,我们试图寻找一种更为有效的方法来最大限度地降低无症状感染者的传播风险,比如对一个地区进行抽样病毒检测来评估该地区的无症状感染者的分布情况,再制定不同的隔离和检测措施。请结合问题一的模型,针对一两个国家(或地区),给出切实可行的病毒检测抽样方案,并给出无症状感染者分布预测模型和针对相应预测结果的应对方案。
  3. 给世界卫生组织写一封信,阐述你的团队对于疫情情况的判断,并给出一些防控建议和降低风险的思路。
  附件一是一些网络上公开的疫情数据,更新的数据可以从https://github.com/datasets/covid-19下载。

整体求解过程概述(摘要)

  新型冠状病毒(COVID-9)的爆发给世界经济和人民生活都带来了重创。面对流行病的爆发,如何评估和预测疫情,是有效控制疫情的最佳办法。为了解决这个问题,本文通过构建流行度评价体系,利用因子分析法对指标进行赋权,并以中国为例统计流行度的变化情况,通过均值-标准差控制图法计算出流行度阈值来界定“流行”(Epidemic)和“大流行“(Pandemic)病。然后在传统 SEIR 模型基础上,进行了四项修正,,对无症状感染者的分布进行预测。根据模型的结果,我们给世界卫生组织ᨀ供了一些防控建议,具体如下。
  针对问题一,我们使用因子分析法和均值-标准差控制图法构建了疾病流行程度评估模型。首先流行因素和指标选取原则选取指标,构建了疾病流行度指标体系,分别 3个一级指标和 8 个二级指标,统计好相关数据后,利用极差归一法对数据进行标准化处理,消除其数量级或量纲上的不同。然后利用因子分析法赋予各指标的权重,我们得到了流行度的计算公式。定义好疾病流行开始时间后,我们计算出了中国在疫情期间的每天流行度,利用均值-标准差控制图法计算出流行度阈值,最终得出流行病的界定阈值为流行度在 52.86~82.14,大流行病的界定阈值为大于 82.14。
  针对问题二,我们对 SEIR 模型进行修正构建了无症状感染者的分布预测模型。首先我们构建了基础的 SEIR 模型,为了使模型可以更加准确地模拟 COVID-19 疫情发展趋势,我们结合世界各地 COVID-19 疫情实况对 SEIR 模型进行了四项修正,并且通过对中国 COVID-19 疫情发展趋势的模拟仿真和对湖北省无症状感染者分布预测效果的评估验证了修正的 SEIR 模型准确性。最后我们使用模型对湖北省、黑龙江省和广东省的无症状感染者分布预测,得到了这三个当前无症状感染者分布较密集省份未来无症状感染者分布走势和无症状感染者消失的大致日期。
  针对问题三,我们基于前两问的结果,ᨀ出了相应的疫情应对方案。ᨀ前检测出感染者可以有效地预防疫情的传播,因此我们首先需要有效地发现感染人员,对人群进行抽样检测。我们根据流行程度的不同,我们对不同的地区采取不同的抽样比例和抽样人群,形成不同的抽样策略。其次,我们根据国家卫生健康委员会和世界卫生组织有关病毒检测的指导文件,设计了我们的病毒检测方案。最后,如果发现无症状患者,要制定相应的隔离措施。我们根据无症状患者预测分布的结果划分了 3 种不同的等级,根据等级的不同制定了对应的隔离方案。
  最后,我们总结了模型的内容和结果,给世界卫生组织ᨀ供的防疫的建议和具体的风险降低方案。

问题分析:

  问题 1 的分析
  对于如何定量界定“流行”与“大流行”,需要利构建一个疾病流行度指标体系。具体的做法思想是如何找到流行度评价的指标,并对指标进行相应的赋权。指标需要用数据表示,考虑到指标之间的量级与量纲不同,因此,要用极差归一法对各项指标进行标准化处理。标准化数据后,得到流行度的计算公式,最后根据该公式结合均值-标准差算法定量得出流行度的阈值,根据阈值构建疾病流行度指标体系从而定量界定“流行”与“大流行”。
  问题 2 的分析
  对于预测无症状感染人群的分布情况,需要构建一个模型进行疫情发展趋势的模拟仿真和预测无症状感染分布预测。首先,考虑到 COVID-19 是有着相对较长潜伏期的传染病,再结合各地实际疫情,在经典的 SEIR 模型基础上进行修正,从而得到修正 SEIR模型。其次,评估和验证该模型在中国疫情发展趋势的模拟仿真和湖北省无症状感染人群的分布预测的准确性。最后,使用该模型结合现有数据对湖北省、黑龙江省和广东省无症状感染群人分布进行预测。
  问题 3 的分析
  在前两个问题所得到的模型基础上,根据疫情严重程度和无症状感染人群密度等级对地区进行归类,再根据不同的疫情严重程度和无症状感染人群密度等级分别ᨀ出相应针对性的抽样检测隔离方案。具体做法是先根据疫情严重程度采用不同的抽样方案,例如抽样来源不同;然后再根据各地区不同的无症状感染人群密度等级分别采用不同的隔离方案,例如隔离地点和检测内容不同。最后,根据以上结果,结合实际情况,给出具体的防控管理政策,从而降低无症状感染人群传播病毒的风险和病毒在各地区传播的风险。
在这里插入图片描述

模型假设:

  1. 假设题目所给的数据真实可靠;
  2. 假设病毒只通过人传人的途径进行传播;
  3. 假设现阶段没有能够治疗的特效药和疫苗;
  4. 假设外界因素对各种概率的值无影响;
  5. 假设各地区出生人数、死亡人数和国际间的人口流动对模型无影响;

论文缩略图:

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

%SEIR模型
clear;clc;
%参数设置
N=11082000;%武汉人口数
tf=1;%道路通行阻碍系数
pe=1;%人口密度阻碍系数
fl=0.1;%由政府政策引起的人口流动性的变化
Bf=0.5;%因防控阻碍传染率系数
hy=1;%医疗水平影响治愈率系数
hk=1;%医疗水平影响死亡率系数
mh=1;%医疗能力水平系数
I=2;%传染者
R=0;%康复者
D=0;%死亡患者数量
E=0;%潜伏者
S=N-I;%易感染者
r=50;%接触病患的人数
a=0.0125;%潜伏者患病概率
B=0.8;%感染概率
y=0.014384;%日康复概率
k=0.002542;%日致死率
r=r*tf*pe;
r1=r;%潜伏者接触的人数
T=20:1000;
nt=0.1;%日有效核酸检测系数
co=2000;%日核酸检测成本
for idx =1:length(T)-1if idx>14B=B*Bf;r=r*fl;r1=r1*fl;mh=1.5;end%进行检测
%     B=B*Bf;
%     r=r*fl;
%     r1=r1*fl;
%     mh=1.5;
%     E(idx)=E(idx)-nt*co;
%     r1=r1*0.1;
%     disp('实行核酸检测')if idx>13&&idx<40E(idx)=E(idx)-nt*co;r1=r1*0.2;disp('实行核酸检测')elser1 =r;   endS(idx+1)=S(idx)-r*B*I(idx)*S(idx)/N;%易感者E(idx+1)=E(idx)+r1*B*S(idx)*I(idx)/N-a*E(idx);%潜伏者I(idx+1)=I(idx)+a*E(idx)-(y*mh+k/mh)*I(idx);%患病者R(idx+1)=R(idx)+y*mh*I(idx);%康复者D(idx+1)=D(idx)+k*I(idx)/mh;%死亡病例endB={'01-19','02-08','02-28','03-19','04-08','04-28','05-18','06-07','06-27','07-17','08-06'};
plot(T,E,T,I,T,R,T,D);
grid on;
set(gca,'XTickLabel',B)
xlabel('日期');
ylabel('人数');
legend('潜伏者','传染者','康复者','死亡者');
%title('疫情情况');
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/231293.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

打工人的2.0时代,只需要一副AR眼镜!

在数字化时代&#xff0c;工业行业中的生产效率如何得到提升&#xff1f;工业AR眼镜或许是一个不错的选择。不过工业AR眼镜真的可以协助员工处理工作中所遇到的各种问题吗&#xff1f;我们以制造业、医疗行业、船舶业的不同从业者为例&#xff1a; 假如你是一名制造业从业者&am…

Linux第4步_安装VMwareTools

安装Ubuntu操作系统后&#xff0c;就可以安装VMwareTools了&#xff0c;目的是实现“电脑和虚拟机之间互相复制粘贴文件”。 1、双击桌面图标“VMware Workstation Pro”&#xff0c;然后点击下图中的“开机”&#xff0c;打开虚拟机电源。 2、双击下图中的用户名“zgq” 3、…

解决npm,pnpm,yarn等安装electron超时等问题

我在安装electron的时候&#xff0c;出现了超时等等各种问题&#xff1a; &#xff08;RequestError: connect ETIMEDOUT 20.205.243.166:443&#xff09; npm yarn&#xff1a;Request Error: connect ETIMEDOUT 20.205.243.166:443 RequestError: socket hang up npm ER…

Kafka集群详解

Kafka介绍Kafka集群介绍Kafka集群特点Kafka集群搭建在这里插入图片描述Kafka集群如何进行故障切换Kafka集群Leader的选举Kafka集群如何快速横向拓展Kafka集群搭建最佳实践Kafka集群可以使用单节点Zookeeper吗Kafka集群的消费者信息保存在那里Kafka集群的Topic的分区数的设置规则…

LeetCode(36)有效的数独 ⭐⭐

请你判断一个 9 x 9 的数独是否有效。只需要 根据以下规则 &#xff0c;验证已经填入的数字是否有效即可。 数字 1-9 在每一行只能出现一次。数字 1-9 在每一列只能出现一次。数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。&#xff08;请参考示例图&#xff09; 注…

(Java基础知识综合)

进制转换&#xff1a; 其他转10 10转其他 2进制8和16 8和16转2 位运算&#xff1a; >> 除于2 <<乘以2 近似值 空心金字塔 this关键字还可以用于访问父类中的属性和方法

Java的内部类

Java的内部类 1. 什么是内部类?2. 内部类的分类2.1 成员式内部类2.1.1 成员内部类&#xff08;Member Inner Class&#xff09;2.1.2 静态内部类&#xff08;Static Nested Class&#xff09; 2.2 局部式内部类2.2.1 局部内部类&#xff08;Local Inner Class&#xff09;2.2.…

计算机网络期末复习

计算机网络复习 1.第一章 1.2.2计算机啊网络的分类(认识) 按网络的覆盖范围进行分类&#xff1a; 局域网城域网广域网个人区域网 按网络的使用者进行分类&#xff1a; 公用网专用网 1.3互联网的组成(掌握) 从功能上可以划分为以下两大部分&#xff1a; 边缘部分&#x…

Halcon算子精讲:形态学操作(圆形操作)

膨胀操作&#xff08;圆形膨胀&#xff09; 算子 dilation_circle(Region, RegionDilation, 3.5) 原理 将区域中边界的每个像素点以3.5为半径做圆&#xff0c;原有区域 所做圆区域 膨胀后区域。 作用 扩大目标所在区域或连接区域破碎部分。 对比图 腐蚀操作&#xff08;圆…

[2023-年度总结]凡是过往,皆为序章

原创/朱季谦 2023年12月初&#xff0c;傍晚&#xff0c;在深圳的小南山看了一场落日。 那晚我们坐在山顶的草地上&#xff0c;拍下了这张照片——仿佛在秋天的枝头上&#xff0c;结出一颗红透的夕阳。 这一天很快就会随着夜幕的降临&#xff0c;化作记忆的碎片&#xff0c;然…

利用 IntelliJ IDEA 整合 GitHub 实现项目版本控制与协作管理

目录 前言1 设置GitHub登录账号2 将项目分享到GitHub3 IntelliJ IDEA 中导入Github项目4 往GitHub推送代码4.1 Commit Change&#xff08;提交到本地库&#xff09;4.2 Git -> Repository -> Push&#xff08;推送到远程库&#xff09; 5 拉取远程库代码到本地6 克隆远程…

大模型应用实践:AIGC探索之旅

随着OpenAI推出ChatGPT&#xff0c;AIGC迎来了前所未有的发展机遇。大模型技术已经不仅仅是技术趋势&#xff0c;而是深刻地塑造着我们交流、工作和思考的方式。 本文介绍了笔者理解的大模型和AIGC的密切联系&#xff0c;从历史沿革到实际应用案例&#xff0c;再到面临的技术挑…

降噪自编码器(Denoising Autoencoder)

降噪自编码器&#xff08;Denoising Autoencoder&#xff09;是一种用于无监督学习的神经网络模型。与普通的自编码器不同&#xff0c;降噪自编码器的目标是通过在输入数据中引入噪声&#xff0c;然后尝试从具有噪声的输入中重建原始无噪声数据。 以下是降噪自编码器的主要特点…

VCoder:大语言模型的眼睛

简介 VCoder的一个视觉编码器&#xff0c;能够帮助MLLM更好地理解和分析图像内容。提高模型在识别图像中的对象、理解图像场景方面的能力。它可以帮助模型显示图片中不同物体的轮廓或深度图&#xff08;显示物体距离相机的远近&#xff09;。还能更准确的理解图片中的物体是什…

three.js Raycaster(鼠标点击选中模型)

效果&#xff1a; 代码&#xff1a; <template><div><el-container><el-main><div class"box-card-left"><div id"threejs" style"border: 1px solid red"></div><div class"box-right"…

科普:嵌入式多核并行仿真

自信息技术革命以来&#xff0c;计算机一直被应用在各种复杂的数据处理中&#xff0c;如火箭弹道&#xff0c;高能物理和生物学数据等。随着嵌入式领域的多样化需求的不断丰富&#xff0c;多核CPU的应用也越来越广泛&#xff1a;嵌入式系统通常需要同时处理多个任务和实时数据&…

14:00面试,14:08就出来了,问的问题过于变态了。。。

从小厂出来&#xff0c;没想到在另一家公司又寄了。 到这家公司开始上班&#xff0c;加班是每天必不可少的&#xff0c;看在钱给的比较多的份上&#xff0c;就不太计较了。没想到10月一纸通知&#xff0c;所有人不准加班&#xff0c;加班费不仅没有了&#xff0c;薪资还要降40…

Unity3D Shader 之透视效果XRay

1、 Shader "Unlit/XRay" {Properties{_MainTex("Texture", 2D) "white" {}// 漫反射_Diffuse("Diffuse", COLOR) (1,1,1,1)// XRay 效果_XRayColor("XRay Color", COLOR) (0,1,1,1)_XRayPower("XRay Power",…

Java多线程<二>多线程经典场景

leetcode 多线程刷题 上锁上一次&#xff0c;还是上多次&#xff1f; 同步的顺序。 1. 交替打印字符 使用sychronize同步锁使用lock锁使用concurrent的默认机制使用volitale关键字 Thread.sleep() / Thread.yield机制使用automic原子类 方式1 &#xff1a;使用互斥访问st…

运用AI翻译漫画(二)

构建代码 构建这个PC桌面应用&#xff0c;我们需要几个步骤&#xff1a; 在得到第一次的显示结果后&#xff0c;经过测试&#xff0c;有很大可能会根据结果再对界面进行调整&#xff0c;实际上也是一个局部的软件工程中的迭代开发。 界面设计 启动Visual Studio 2017, 创建…