计算机网络-以太网交换基础

一、网络设备的演变

最初的网络在两台设备间使用传输介质如网线等进行连接就可以进行通信。但是随着数据的传输需求,多个设备需要进行数据通信时就需要另外的设备进行网络互联,并且随着网络传输的需求不断更新升级。从一开始的两台设备互联到企业部门内部共享再到企业内部局域网,最后实现Internet国际互联。

1、Hub集线器

Hub设备是一种网络连接设备,用于将多个计算机或其他设备连接在一起。它提供了一个中心集线器,以便将所有连接的设备集中在一起并统一管理。Hub设备的功能包括扩大网络的传输距离、将多个节点集中在一起以及提供信号放大和中转的功能。通过使用Hub设备,用户可以将多个计算机或其他设备连接在一起,形成一个网络,以便共享资源、实现信息交换和协同工作。Hub是一个物理层设备,它工作在OSI模型中的第一层,即物理层

2、网桥设备

网桥的作用是连接不同网段,提高带宽和分割冲突域。它可以用来将一个大的局域网分割为多个小的网段,或将两个以上的局域网互联为一个逻辑局域网,使局域网上的所有用户都可访问服务器。

网桥的工作原理是基于数据链路层进行帧的转发。它根据MAC地址分区块,可隔离碰撞。当网桥接收到一个帧时,它会根据帧的目的MAC地址进行查找和转发。如果目的MAC地址与网桥的某个端口匹配,则将帧转发到相应的端口;否则将帧广播到所有端口

3、二层交换机

二层交换机是指工作在OSI模型的第2层(数据链路层)的交换机,它可以识别数据帧中的MAC地址信息,并根据MAC地址进行转发。二层交换机采用硬件转发技术,可以在高速传输线路上实现线速交换,具有很高的数据吞吐能力。二层交换机(一般不能配置多于2个ip,console无):都属于一个广播域,每个接口独立冲突域。交换机端口数量较丰富,常见有8口、16口、24口、48口规格,性能也较hub和网桥大大提升。

交换机主要通过MAC地址表和ARP表进行转发工作,支持划分VLAN进行隔离广播域。

4、路由器 路由器是一种网络设备,工作在网络层,负责在网络间进行数据转发。它是连接不同网络的关键设备,能够在网络层将发送方传输的数据包根据路由表中的信息,正确地转发到接收方所在的网段。

路由器的主要功能包括路由寻址、路由选择、数据传输和差错控制等。具体来说,它可以根据当前网络的状态和环境因素来选择最佳路径,通过寻径的方式确定数据转发的最佳路径。路由器的每个接口都是单独广播域和冲突域,可以单独配置IP地址。

路由器通过路由表和转发表进行转发。

5、三层交换机L3-SW

三层交换机就是具有部分路由器功能的交换机,工作在OSI网络标准模型的第三层:网络层。三层交换机的最重要目的是加快大型局域网内部的数据交换,所具有的路由功能也是为这目的服务的,能够做到一次路由,多次转发。对于数据包转发等规律性的过程由硬件高速实现,而像路由信息更新、路由表维护、路由计算、路由确定等功能,由软件实现。简单来说就是支持部分路由功能加上二层交换机多端口的优点,一般用于中小企业核心设备。

简单讲就是从两台设备间连接到多设备的互联,以及带宽速率的不断升级,最终实现国际互联。

二、以太网协议与工作原理

2.1 冲突域

冲突域是指连接在同一共享介质上的所有节点的集合,冲突域内所有节点竞争同一带宽,一个节点发出的报文(无论是单播、组播、广播),其余节点都可以收到。

冲突域
冲突域

2.2 广播域

广播报文所能到达的整个访问范围称为二层广播域,简称广播域,同一广播域内的主机都能收到广播报文。全1MAC地址FF-FF-FF-FF-FF-FF为广播地址,所有节点都会处理目的地址为广播地址的数据帧,该数据帧所能到达的整个访问范围称为二层广播域,简称广播域。

广播域
广播域

2.3 CSMA/CD

交换机设备工作在二层以太网,需要遵循一定的协议进行传输。以太网是建立在CSMA/CD (Carrier Sense Multiple Access/Collision Detection,载波监听多路访问/冲突检测)机制上的广播型网络。

CSMA/CD是一种媒体访问控制方法,用于解决网络中多个节点同时发送数据时可能发生的冲突。CSMA/CD全称为Carrier Sense Multiple Access with Collision Detection,其中CS表示载波侦听,MA表示多址访问,CD表示冲突检测。

在CSMA/CD协议中,所有节点在发送数据前都会先侦听信道是否空闲。如果信道空闲,节点会发送数据;如果信道忙碌,节点则会等待一段时间后再次侦听。当两个或更多的节点同时发送数据时,会导致信号发生碰撞。当发生碰撞时,节点会检测到冲突并停止发送数据。

2.4 以太网数据帧

以太网属于数据链路层,传输数据帧。以太网技术所使用的帧称为以太网帧 (Ethernet Frame),或简称以太帧。以太帧的格式有两个标准:Ethernet_II格式和IEEE 802.3格式。

以太网数据帧 Ethernet II 的type字段标识上层协议 ARP(0x0806) IPV4(0x0800)

主要通过源MAC和目的MAC进行识别别传输。

2.5 MAC地址

MAC (Medium Access Control)地址在网络中唯一标识一个网卡,每个网卡都需要并拥有有唯一的一个MAC地址。正常情况下一块网卡的MAC地址是具有全球唯一性的。

MAC地址格式:MAC地址由48比特(6个字节)长,12位的16进制数字组成。

MAC地址格式
MAC地址格式

MAC地址构成及分类:

MAC
MAC

单播帧在知道具体源目MAC地址时直接转发。 单播帧

广播帧用于在不知道具体MAC地址时交换机泛洪发送。 广播帧

用于组播泛洪。 组播帧

三、交换机工作原理

现在大部分都是已经使用交换机进行网络互联,Hub和网桥已经比较少了,因此主要学习交换机的工作与使用即可。

3.1 交换机工作原理:

  • 在第一次通信时,发送端发送数据帧,携带源IP、源MAC、目的IP,目的MAC,然后交换机内部维护一个MAC地址表,将源MAC和入接口进行记录。
  • 查询自身MAC地址表,是否有匹配目的MAC地址的表项,有则转发到对应端口,没有则进行泛洪,除了入接口外的所有接口进行泛洪转发。
  • 目的主机接收到泛洪广播帧,回复交换机自身MAC,交换机将源MAC也记录到MAC地址表中。
  • 将发送端数据帧通过该端口转发,自此两端MAC地址与接口映射关系都存在MAC地址表中,直接从对应端口进行单播帧转发即可。
数据帧转发
数据帧转发
MAC地址表
MAC地址表

3.2 交换机报文处理方式

交换机会通过传输介质进入其端口的每一个帧都进行转发操作,交换机的基本作用就是用来转发数据帧。

交换机对帧的处理行为一共有三种:泛洪(Flooding),转发(Forwarding),丢弃(Discarding)。

  • 泛洪:交换机把从某一端口进来的帧通过所有其它的端口转发出去(注意,“所有其它的端口”是指除了这个帧进入交换机的那个端口以外的所有端口)。
  • 转发:交换机把从某一端口进来的帧通过另一个端口转发出去(注意,“另一个端口”不能是这个帧进入交换机的那个端口)。
  • 丢弃:交换机把从某一端口进来的帧直接丢弃。
交换机报文处理方式
交换机报文处理方式

如果交换机接收到单播帧,查找mac地址表但是mac地址表没有表项就进行泛洪。

如果交换机接收到广播帧直接进行泛洪。

因为交换机学习源mac地址,不可能学习到广播mac地址表项,交换机mac地址表记录是单播的。

如果手动数据帧接收端口和回复端口是相同则丢弃数据帧。默认华为交换机mac老化时间300秒。

3.3 同网段数据通信过程:

  1. 主机发送数据帧,包含源IP和MAC以及目的IP
  2. 把自己IP地址和将要访问IP地址进行逻辑与运算!判断我们是否属于相同网段?如果网络号一致,说明处于相同网段,直接转发,不需要经过网关;如果网络号不同,说明不是相同网段,不能直接转发,需要经过网关;
  3. 交换机接收到,mac表没有对应记录,从接收端口以外端口泛洪,同时记录源mac和端口
  4. 目的主机接收到数据帧,发送源和目的IP、MAC,交换机查找mac表项通过指定端口转发,同时记录回复报文的源mac和接口
  5. 下一次双方直接单播数据帧通信,交换机依据表项转发。

修改mac表老化时间:

# 查询老化时间
dis mac-address aging-time
# 修改
mac-address aging-time 300

总结:

网络设备从Hub集线器到交换机的发展是不断提高速率和传输效率的过程。现在大部分使用交换机进行终端接入,使用路由器进行路由寻址。交换机工作在数据链路层,通过数据帧进行数据传输,通过维护MAC地址表进行数据转发,有三种处理方式:转发、泛洪、丢弃。有三种数据帧类型:单播帧、广播帧、组播帧。简单了解了交换机工作原理,根据MAC地址表进行转发、泛洪或者丢弃动作。

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/231772.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构第六弹---带头双向循环链表

双向循环链表 1、带头双向循环链表概念2、带头双向循环链表的优势3、带头双向循环链表的实现3.1、头文件包含和结构定义3.2、创建新结点3.3、打印3.4、初始化3.5、销毁3.6、尾插3.7、头插3.8、头删3.9、尾删3.10、查找3.11、在pos之前插入3.12、删除pos位置3.13、判断是否为空3…

EBU7140 Security and Authentication(三)密钥管理;IP 层安全

B3 密钥管理 密钥分类: 按时长: short term:短期密钥,用于一次加密。long term:长期密钥,用于加密或者授权。 按服务类型: Authentication keys:公钥长期,私钥短期…

虾皮、Lazada店铺流量怎么提升?自养号优势及测评系统如何搭建?

虾皮、Lazada是东南亚地区最大的购物平台之一,吸引了大量的买家和卖家。在竞争激烈的虾皮市场上,如何提升店铺的流量成为许多卖家关注的问题。以下是关于如何提升虾皮、Lazada店铺流量的一些建议。 一、店铺流量怎么提升? 首先,进行优质的…

50N65-ASEMI高压N沟道MOS管50N65

编辑:ll 50N65-ASEMI高压N沟道MOS管50N65 型号:50N65 品牌:ASEMI 封装:TO-247 连续漏极电流(Id):50A 漏源电压(Vdss):650V 功率(Pd):388W 芯片个数:2 引脚数量:…

tp5+workman(GatewayWorker) 安装及使用

一、安装thinkphp5 1、宝塔删除php禁用函数putenv、pcntl_signal_dispatch、pcntl_wai、pcntl_signal、pcntl_alarm、pcntl_fork,执行安装命令。 composer create-project topthink/think5.0.* tp5 --prefer-dist 2、配置好站点之后,浏览器打开访问成…

软件验收测试计划、验收测试报告案例模板参考

1. 概述 1.1. 编写目的 1.2. 测试背景 1.3. 测试依据 1.4. 测试对象 1.5. 测试资源 2. 测试方式与环境 2.1. 测试方式 2.2. 测试环境 3. 测试结果 3.1. 功能适合性和准确性 3.1.1. 总体统计 3.1.2. 详细结果 3.2. 安全性 3.3. 可靠性和性能 4. 总体分析 5. 测试…

bat批处理文件_输出内容到文本

文章目录 1、echo str > test.txt(覆盖原有内容)2、echo str >> test.txt(不覆盖原有内容,追加) 1、echo str > test.txt(覆盖原有内容) 2、echo str >> test.txt&#xff0…

Spring Cloud Gateway 缓存区异常

目录 1、问题背景 2、分析源码过程 3、解决办法 最近在测试环境spring cloud gateway突然出现了异常,在这里记录一下,直接上干货 1、问题背景 测试环境spring cloud gateway遇到以下异常 DataBufferLimitException: Exceeded limit on max bytes t…

Docker nginx容器代理播放m3u8视频文件(HLS)

文章目录 Docker Nginx容器代理播放M3U8文件教程获取Nginx Docker镜像设置Nginx配置文件用 ffmpeg 将 MP4 文件转换成 m3u8 文件运行Docker容器测试M3U8流其他问题我用vlc都能播放http://192.168.121.50/forest4kTest.m3u8和http://192.168.121.50/forest4kTest.mp4&#xff0c…

【HBase】——优化

1 RowKey设计 重要:一条数据的唯一标识就是 rowkey,那么这条数据存储于哪个分区,取决于 rowkey 处于 哪个一个预分区的区间内,设计 rowkey的主要目的 ,就是让数据均匀的分布于所有的 region 中,在一定程度…

HTML 使用 ruby 给汉字加拼音

使用 ruby 给汉字加拼音 兼容性 使用 ruby 给汉字加拼音 大家有没有遇到过要给汉字头顶上加拼音的需求? 如果有的话, 你是怎么解决的呢? 如果费尽心思, 那么你可能走了很多弯路, 因为 HTML 原生就有这样的标签来帮我们实现类似的需求. <ruby> ruby 本身是「红宝石」…

大学物理-实验篇——测量误差与数据处理(测量分类、误差、有效数字、逐差法)

目录 测量分类 测量次数角度 测量条件角度 误差 误差分类 系统误差 随机误差 异常值 误差描述 精密度&#xff08;Precision&#xff09; 正确度&#xff08;Trueness&#xff09; 准确度/精确度&#xff08;Accuracy&#xff09; 随机误差的处理 直接测量 算术…

一起玩儿物联网人工智能小车(ESP32)——27. 旋转编码器的使用方法

摘要&#xff1a;本文介绍旋转编码器的使用方法 旋转编码器是一种机电设备&#xff0c;可将轴或轴的角位置或运动转换为模拟或数字输出信号&#xff0c;在工业控制中发挥着举足轻重的作用。旋转编码器目前被广泛的应用在数控机床、印刷设备、包装机械、输送带、电梯、机器人、风…

WeNet语音识别+Qwen-72B-Chat Bot+Sambert-Hifigan语音合成

WeNet语音识别Qwen-72B-Chat Bot&#x1f47e;Sambert-Hifigan语音合成 简介 利用 WeNet 进行语音识别&#xff0c;使用户能够通过语音输入与系统进行交互。接着&#xff0c;Qwen-72B-Chat Bot作为聊天机器人接收用户的语音输入或文本输入&#xff0c;提供响应并与用户进行对话…

Docker overlay2文件busy,容器不能删除问题解决

文章目录 在删除docker容器的时候报错,说设备正忙通过 docker ps -a 查看有两个状态的dead的容器解决方法&#xff1a;1.查看所有挂载的设备2.截取设备的进程id3.清理进程(kill掉即可) 在删除docker容器的时候报错,说设备正忙 Error response from daemon: Driver overlay2 fai…

【ARMv8架构系统安装PySide2】

ARMv8架构系统安装PySide2 Step1. 下载Qt资源包Step2. 配置和安装Qt5Step3. 检查Qt-5.15.2安装情况Step4. 安装PySide2所需的依赖库Step5. 下载和配置PySide2Step6. 检验PySide2是否安装成功 Step1. 下载Qt资源包 if you need the whole Qt5 (~900MB): wget http://master.qt…

Meshlab界面和菜单初步认识

文章目录 界面认识菜单 界面认识 顾名思义&#xff0c;MeshLab即网格实验室&#xff0c;用于处理三维对象&#xff0c;并有着针对网格基于网格操作的各种工具&#xff0c;是一个功能强大的三维几何处理系统。因其开源&#xff0c;直接搜官网下载即可。安装过程无坑&#xff0c…

vue icon 本地正常 线上打包失败变乱码

出现这个原因是因为sass解析的问题 Node版本高的话可以通过升级sass版本 并且配置vue.config规避这个问题 //给sass配置的东西 这个对应的版本是sass 1.39.0 本人node版本v14 升级sass版本后出现报错css: {loaderOptions: {scss: {additionalData: import "/styles/var…

C#,入门教程(10)——常量、变量与命名规则的基础知识

上一篇&#xff1a; C#&#xff0c;入门教程(09)——运算符的基础知识https://blog.csdn.net/beijinghorn/article/details/123908269 C#用于保存计算数据的元素&#xff0c;称为“变量”。 其中一般不改变初值的变量&#xff0c;称为常变量&#xff0c;简称“常量”。 无论…

nginx 二、配置域名

文章目录 一、配置本地域名查看虚拟机ip修改hosts文件测试域名是否配置成功 二、配置aliyun域名三、实践1.创建html2.配置nginx3.测试服务器内部测试页面测试 总结 docker中启动nginx容器完成如下操作&#xff0c;对于docker安装nginx可以看这篇文章 nginx 一、安装与conf浅析 …