使用大语言模型(Deepseek)构建一个基于 SQL 数据的问答系统

GitHub代码仓库

架构

从高层次来看,这些系统的步骤如下:

  1. 将问题转换为SQL查询:模型将用户输入转换为SQL查询。

  2. 执行SQL查询:执行查询。

  3. 回答问题:模型根据查询结果响应用户输入。

image.png

样本数据

下载样本数据:

curl -s https://raw.githubusercontent.com/lerocha/chinook-database/master/ChinookDatabase/DataSources/Chinook_Sqlite.sql | sqlite3 Chinook.db

现在,Chinook.db 位于我们的目录中,我们可以使用 SQLAlchemy 驱动的 SQLDatabase 类与它进行交互:

from langchain_community.utilities import SQLDatabasedb = SQLDatabase.from_uri("sqlite:Documents/learn-langchain/example-data/Chinook.db")
print(db.dialect)
print(db.get_usable_table_names())
db.run("SELECT * FROM Artist LIMIT 10;")

链条是可预测步骤的组合。在 LangGraph 中,我们可以通过简单的节点序列来表示链条。让我们创建一个步骤序列,给定一个问题,执行以下操作:

  1. 将问题转换为 SQL 查询;

  2. 执行查询;

  3. 使用结果回答原始问题。

这个安排并不支持所有场景。例如,系统会对任何用户输入执行 SQL 查询——即使是“你好”。值得注意的是,正如我们下面将看到的,有些问题需要多次查询才能回答。我们将在“代理”部分解决这些场景。

应用状态

我们应用的 LangGraph 状态控制着输入到应用程序的数据、在步骤之间传递的数据以及应用程序输出的数据。它通常是一个 TypedDict,也可以是一个 Pydantic BaseModel。

对于这个应用,我们可以只跟踪输入的问题、生成的查询、查询结果和生成的答案:

from typing_extensions import TypedDictclass State(TypedDict):question: strquery: strresult: stranswer: str

现在我们只需要一些函数来操作这个状态并填充其内容。

将问题转换为 SQL 查询

第一步是将用户输入转换为 SQL 查询。为了可靠地获取 SQL 查询(不包括 Markdown 格式的说明或解释),我们将利用 LangChain 的结构化输出抽象。

from config import *
from langchain_openai import ChatOpenAIllm = ChatOpenAI(model='deepseek-v3')

我们将从 Prompt Hub 中获取一个提示,来指导模型。

from langchain import hubquery_prompt_template = hub.pull("langchain-ai/sql-query-system-prompt")assert len(query_prompt_template.messages) == 1
query_prompt_template.messages[0].pretty_print()
===============================[1m System Message [0m================================Given an input question, create a syntactically correct [33;1m[1;3m{dialect}[0m query to run to help find the answer. Unless the user specifies in his question a specific number of examples they wish to obtain, always limit your query to at most [33;1m[1;3m{top_k}[0m results. You can order the results by a relevant column to return the most interesting examples in the database.Never query for all the columns from a specific table, only ask for a the few relevant columns given the question.Pay attention to use only the column names that you can see in the schema description. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.Only use the following tables:
[33;1m[1;3m{table_info}[0mQuestion: [33;1m[1;3m{input}[0m

这个提示包含了我们需要填充的几个参数,例如 SQL 方言和表模式。LangChain 的 SQLDatabase 对象包含了一些方法来帮助我们处理这些。我们的 write_query 步骤将只填充这些参数并提示模型生成 SQL 查询:

from pydantic import BaseModel
from typing_extensions import Annotatedfrom langchain_core.messages import SystemMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.output_parsers import PydanticOutputParserclass QueryOutput(BaseModel):"""Generated SQL query."""query: Annotated[str, ..., "Syntactically valid SQL query."]parser = PydanticOutputParser(pydantic_object=QueryOutput)query_prompt = ChatPromptTemplate.from_messages([('system', '{format_instructions}'),query_prompt_template]
).partial(format_instructions=parser.get_format_instructions())def write_query(state: State):"""Generate SQL query to fetch information."""prompt = query_prompt.invoke({"dialect": db.dialect,"top_k": 10,"table_info": db.get_table_info(),"input": state["question"],})chain = llm | parserresult = chain.invoke(prompt)return {"query": result.query}

看一下query_prompt的内容:

for message in query_prompt.messages:message.pretty_print()
================================[1m System Message [0m================================[33;1m[1;3m{format_instructions}[0m
================================[1m System Message [0m================================Given an input question, create a syntactically correct [33;1m[1;3m{dialect}[0m query to run to help find the answer. Unless the user specifies in his question a specific number of examples they wish to obtain, always limit your query to at most [33;1m[1;3m{top_k}[0m results. You can order the results by a relevant column to return the most interesting examples in the database.Never query for all the columns from a specific table, only ask for a the few relevant columns given the question.Pay attention to use only the column names that you can see in the schema description. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.Only use the following tables:
[33;1m[1;3m{table_info}[0mQuestion: [33;1m[1;3m{input}[0m

让我们测试一下:

write_query({"question": "How many Employees are there?"})
{'query': 'SELECT COUNT(*) AS EmployeeCount FROM Employee;'}

执行查询

这是创建 SQL 链条中最危险的部分。在自动执行查询之前,请仔细考虑是否可以对数据运行自动化查询。尽可能减少数据库连接权限。考虑在查询执行之前在链条中添加人工批准步骤(见下文)。

为了执行查询,我们将从 langchain-community 加载一个工具。我们的 execute_query 节点只是封装这个工具:

from langchain_community.tools.sql_database.tool import QuerySQLDatabaseTooldef execute_query(state: State):"""Execute SQL query."""execute_query_tool = QuerySQLDatabaseTool(db=db)return {"result": execute_query_tool.invoke(state["query"])}

测试一下:

execute_query({'query': 'SELECT COUNT(*) AS EmployeeCount FROM Employee;'})
{'result': '[(8,)]'}

生成答案

最后,我们的最后一步是根据从数据库中提取的信息生成问题的答案:

def generate_answer(state: State):"""Answer question using retrieved information as context."""prompt = ("Given the following user question, corresponding SQL query, ""and SQL result, answer the user question.\n\n"f'Question: {state["question"]}\n'f'SQL Query: {state["query"]}\n'f'SQL Result: {state["result"]}')response = llm.invoke(prompt)return {"answer": response.content}

使用 LangGraph 进行协调

最后,我们将应用程序编译成一个单一的图形对象。在这种情况下,我们只是将这三步连接成一个单一的序列。

from langgraph.graph import START, StateGraphgraph_builder = StateGraph(State).add_sequence([write_query, execute_query, generate_answer]
)
graph_builder.add_edge(START, "write_query")
graph = graph_builder.compile()
from IPython.display import Image, displaydisplay(Image(graph.get_graph().draw_mermaid_png()))

请添加图片描述

测试一下应用!

for step in graph.stream({"question": "How many employees are there?"}, stream_mode="updates"
):print(step)
{'write_query': {'query': 'SELECT COUNT(*) AS NumberOfEmployees FROM Employee;'}}
{'execute_query': {'result': '[(8,)]'}}
{'generate_answer': {'answer': 'There are **8 employees** in total.'}}

人工参与

LangGraph 支持许多对这个工作流有用的功能,其中之一就是人工参与:我们可以在敏感步骤(如执行 SQL 查询)之前中断应用程序,以便进行人工审核。这是通过 LangGraph 的持久化层实现的,该层将运行进度保存到您选择的存储中。下面,我们指定了内存存储:

from langgraph.checkpoint.memory import MemorySavermemory = MemorySaver()
graph = graph_builder.compile(checkpointer=memory, interrupt_before=["execute_query"])# Now that we're using persistence, we need to specify a thread ID
# so that we can continue the run after review.
config = {"configurable": {"thread_id": "1"}}display(Image(graph.get_graph().draw_mermaid_png()))

请添加图片描述

让我们重复相同的运行,并添加一个简单的 yes/no 审批步骤:

for step in graph.stream({"question": "How many employees are there?"},config,stream_mode="updates",
):print(step)try:user_approval = input("Do you want to go to execute query? (yes/no): ")
except Exception:user_approval = "no"if user_approval.lower() == "yes":# If approved, continue the graph executionfor step in graph.stream(None, config, stream_mode="updates"):print(step)
else:print("Operation cancelled by user.")
{'write_query': {'query': 'SELECT COUNT(*) AS EmployeeCount FROM Employee;'}}
{'__interrupt__': ()}
{'execute_query': {'result': '[(8,)]'}}
{'generate_answer': {'answer': 'There are **8 employees** in total.'}}

代理

代理利用大型语言模型(LLM)的推理能力在执行过程中做出决策。使用代理可以将更多的判断权转移到查询生成和执行过程中。尽管它们的行为比上述“链条”更不可预测,但它们也有一些优势:

• 它们可以根据需要多次查询数据库以回答用户问题。

• 它们可以通过运行生成的查询,捕获回溯并正确地重新生成查询,从而从错误中恢复。

• 它们不仅可以根据数据库的内容回答问题,还可以基于数据库的模式回答问题(比如描述特定的表)。

下面我们组装一个最小的 SQL 代理。

from langchain_community.agent_toolkits import SQLDatabaseToolkittoolkit = SQLDatabaseToolkit(db=db, llm=llm)tools = toolkit.get_tools()tools
[QuerySQLDatabaseTool(description="Input to this tool is a detailed and correct SQL query, output is a result from the database. If the query is not correct, an error message will be returned. If an error is returned, rewrite the query, check the query, and try again. If you encounter an issue with Unknown column 'xxxx' in 'field list', use sql_db_schema to query the correct table fields.", db=<langchain_community.utilities.sql_database.SQLDatabase object at 0x11919bee0>),InfoSQLDatabaseTool(description='Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables. Be sure that the tables actually exist by calling sql_db_list_tables first! Example Input: table1, table2, table3', db=<langchain_community.utilities.sql_database.SQLDatabase object at 0x11919bee0>),ListSQLDatabaseTool(db=<langchain_community.utilities.sql_database.SQLDatabase object at 0x11919bee0>),QuerySQLCheckerTool(description='Use this tool to double check if your query is correct before executing it. Always use this tool before executing a query with sql_db_query!', db=<langchain_community.utilities.sql_database.SQLDatabase object at 0x11919bee0>, llm=ChatOpenAI(client=<openai.resources.chat.completions.Completions object at 0x11d442b80>, async_client=<openai.resources.chat.completions.AsyncCompletions object at 0x11d4841f0>, root_client=<openai.OpenAI object at 0x11d3e05b0>, root_async_client=<openai.AsyncOpenAI object at 0x11d442bb0>, model_name='deepseek-v3', model_kwargs={}, openai_api_key=SecretStr('**********'), openai_api_base='https://dashscope.aliyuncs.com/compatible-mode/v1'), llm_chain=LLMChain(verbose=False, prompt=PromptTemplate(input_variables=['dialect', 'query'], input_types={}, partial_variables={}, template='\n{query}\nDouble check the {dialect} query above for common mistakes, including:\n- Using NOT IN with NULL values\n- Using UNION when UNION ALL should have been used\n- Using BETWEEN for exclusive ranges\n- Data type mismatch in predicates\n- Properly quoting identifiers\n- Using the correct number of arguments for functions\n- Casting to the correct data type\n- Using the proper columns for joins\n\nIf there are any of the above mistakes, rewrite the query. If there are no mistakes, just reproduce the original query.\n\nOutput the final SQL query only.\n\nSQL Query: '), llm=ChatOpenAI(client=<openai.resources.chat.completions.Completions object at 0x11d442b80>, async_client=<openai.resources.chat.completions.AsyncCompletions object at 0x11d4841f0>, root_client=<openai.OpenAI object at 0x11d3e05b0>, root_async_client=<openai.AsyncOpenAI object at 0x11d442bb0>, model_name='deepseek-v3', model_kwargs={}, openai_api_key=SecretStr('**********'), openai_api_base='https://dashscope.aliyuncs.com/compatible-mode/v1'), output_parser=StrOutputParser(), llm_kwargs={}))]

系统提示

我们还需要为我们的代理加载一个系统提示。这将包括行为指令。

from langchain import hubprompt_template = hub.pull("langchain-ai/sql-agent-system-prompt")assert len(prompt_template.messages) == 1

让我们填充提示中的参数:

system_message = prompt_template.format(dialect="SQLite", top_k=5)
print(system_message)
System: You are an agent designed to interact with a SQL database.
Given an input question, create a syntactically correct SQLite query to run, then look at the results of the query and return the answer.
Unless the user specifies a specific number of examples they wish to obtain, always limit your query to at most 5 results.
You can order the results by a relevant column to return the most interesting examples in the database.
Never query for all the columns from a specific table, only ask for the relevant columns given the question.
You have access to tools for interacting with the database.
Only use the below tools. Only use the information returned by the below tools to construct your final answer.
You MUST double check your query before executing it. If you get an error while executing a query, rewrite the query and try again.DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database.To start you should ALWAYS look at the tables in the database to see what you can query.
Do NOT skip this step.
Then you should query the schema of the most relevant tables.

初始化代理

我们将使用一个预构建的 LangGraph 代理来构建我们的代理。

from langchain_core.messages import HumanMessage
from langgraph.prebuilt import create_react_agentllm = ChatOpenAI(model="qwen-max")
agent_executor = create_react_agent(llm, tools, prompt=system_message)display(Image(agent_executor.get_graph().draw_mermaid_png()))

请添加图片描述

question = "Which country's customers spent the most?"result = agent_executor.invoke({"messages": [{"role": "user", "content": question}]})
for m in result['messages']:m.pretty_print()
================================[1m Human Message [0m=================================Which country's customers spent the most?
==================================[1m Ai Message [0m==================================
Tool Calls:sql_db_list_tables (call_11959469bb4c42ab8faaee)Call ID: call_11959469bb4c42ab8faaeeArgs:tool_input:
=================================[1m Tool Message [0m=================================
Name: sql_db_list_tablesAlbum, Artist, Customer, Employee, Genre, Invoice, InvoiceLine, MediaType, Playlist, PlaylistTrack, Track
==================================[1m Ai Message [0m==================================
Tool Calls:sql_db_schema (call_6f549cbdefa94a5e80152e)Call ID: call_6f549cbdefa94a5e80152eArgs:table_names: Customer,Invoice
=================================[1m Tool Message [0m=================================
Name: sql_db_schemaCREATE TABLE "Customer" ("CustomerId" INTEGER NOT NULL, "FirstName" NVARCHAR(40) NOT NULL, "LastName" NVARCHAR(20) NOT NULL, "Company" NVARCHAR(80), "Address" NVARCHAR(70), "City" NVARCHAR(40), "State" NVARCHAR(40), "Country" NVARCHAR(40), "PostalCode" NVARCHAR(10), "Phone" NVARCHAR(24), "Fax" NVARCHAR(24), "Email" NVARCHAR(60) NOT NULL, "SupportRepId" INTEGER, PRIMARY KEY ("CustomerId"), FOREIGN KEY("SupportRepId") REFERENCES "Employee" ("EmployeeId")
)/*
3 rows from Customer table:
CustomerId	FirstName	LastName	Company	Address	City	State	Country	PostalCode	Phone	Fax	Email	SupportRepId
1	Luís	Gonçalves	Embraer - Empresa Brasileira de Aeronáutica S.A.	Av. Brigadeiro Faria Lima, 2170	São José dos Campos	SP	Brazil	12227-000	+55 (12) 3923-5555	+55 (12) 3923-5566	luisg@embraer.com.br	3
2	Leonie	Köhler	None	Theodor-Heuss-Straße 34	Stuttgart	None	Germany	70174	+49 0711 2842222	None	leonekohler@surfeu.de	5
3	François	Tremblay	None	1498 rue Bélanger	Montréal	QC	Canada	H2G 1A7	+1 (514) 721-4711	None	ftremblay@gmail.com	3
*/CREATE TABLE "Invoice" ("InvoiceId" INTEGER NOT NULL, "CustomerId" INTEGER NOT NULL, "InvoiceDate" DATETIME NOT NULL, "BillingAddress" NVARCHAR(70), "BillingCity" NVARCHAR(40), "BillingState" NVARCHAR(40), "BillingCountry" NVARCHAR(40), "BillingPostalCode" NVARCHAR(10), "Total" NUMERIC(10, 2) NOT NULL, PRIMARY KEY ("InvoiceId"), FOREIGN KEY("CustomerId") REFERENCES "Customer" ("CustomerId")
)/*
3 rows from Invoice table:
InvoiceId	CustomerId	InvoiceDate	BillingAddress	BillingCity	BillingState	BillingCountry	BillingPostalCode	Total
1	2	2021-01-01 00:00:00	Theodor-Heuss-Straße 34	Stuttgart	None	Germany	70174	1.98
2	4	2021-01-02 00:00:00	Ullevålsveien 14	Oslo	None	Norway	0171	3.96
3	8	2021-01-03 00:00:00	Grétrystraat 63	Brussels	None	Belgium	1000	5.94
*/
==================================[1m Ai Message [0m==================================
Tool Calls:sql_db_query_checker (call_a859a5ed305e42d2b9048f)Call ID: call_a859a5ed305e42d2b9048fArgs:query: SELECT Customer.Country, SUM(Invoice.Total) AS TotalSpent FROM Invoice JOIN Customer ON Invoice.CustomerId = Customer.CustomerId GROUP BY Customer.Country ORDER BY TotalSpent DESC LIMIT 5;
=================================[1m Tool Message [0m=================================
Name: sql_db_query_checker```sql
SELECT Customer.Country, SUM(Invoice.Total) AS TotalSpent 
FROM Invoice 
JOIN Customer ON Invoice.CustomerId = Customer.CustomerId 
GROUP BY Customer.Country 
ORDER BY TotalSpent DESC 
LIMIT 5;
```
==================================[1m Ai Message [0m==================================
Tool Calls:sql_db_query (call_5b569709098b49dd9336e5)Call ID: call_5b569709098b49dd9336e5Args:query: SELECT Customer.Country, SUM(Invoice.Total) AS TotalSpent FROM Invoice JOIN Customer ON Invoice.CustomerId = Customer.CustomerId GROUP BY Customer.Country ORDER BY TotalSpent DESC LIMIT 5;
=================================[1m Tool Message [0m=================================
Name: sql_db_query[('USA', 523.06), ('Canada', 303.96), ('France', 195.1), ('Brazil', 190.1), ('Germany', 156.48)]
==================================[1m Ai Message [0m==================================The countries whose customers spent the most, in descending order, are as follows:1. USA - $523.06
2. Canada - $303.96
3. France - $195.10
4. Brazil - $190.10
5. Germany - $156.48These are the top 5 countries with the highest spending customers.

代理会执行多个查询,直到获取所需的信息:
1. 列出可用的表;
2. 获取三个表的模式;
3. 通过联接操作查询多个表。

然后,代理能够使用最终查询的结果来生成原始问题的答案。

代理同样可以处理定性问题:

question = "Describe the playlisttrack table"result = agent_executor.invoke({"messages": [{"role": "user", "content": question}]})
for m in result['messages']:m.pretty_print()
================================[1m Human Message [0m=================================Describe the playlisttrack table
==================================[1m Ai Message [0m==================================
Tool Calls:sql_db_schema (call_b9ead21107664c6a851c85)Call ID: call_b9ead21107664c6a851c85Args:table_names: playlisttrack
=================================[1m Tool Message [0m=================================
Name: sql_db_schemaError: table_names {'playlisttrack'} not found in database
==================================[1m Ai Message [0m==================================It seems that there was an error because the table 'playlisttrack' could not be found in the database. Let me first retrieve a list of the available tables to check if the correct table name is being used.
Tool Calls:sql_db_list_tables (call_fc6f21ca229c4a84adb266)Call ID: call_fc6f21ca229c4a84adb266Args:tool_input:
=================================[1m Tool Message [0m=================================
Name: sql_db_list_tablesAlbum, Artist, Customer, Employee, Genre, Invoice, InvoiceLine, MediaType, Playlist, PlaylistTrack, Track
==================================[1m Ai Message [0m==================================The correct table name is indeed 'PlaylistTrack', and it is available in the database. Let me now retrieve the schema for the 'PlaylistTrack' table.
Tool Calls:sql_db_schema (call_ee9bcfe4dfae45edb01325)Call ID: call_ee9bcfe4dfae45edb01325Args:table_names: PlaylistTrack
=================================[1m Tool Message [0m=================================
Name: sql_db_schemaCREATE TABLE "PlaylistTrack" ("PlaylistId" INTEGER NOT NULL, "TrackId" INTEGER NOT NULL, PRIMARY KEY ("PlaylistId", "TrackId"), FOREIGN KEY("TrackId") REFERENCES "Track" ("TrackId"), FOREIGN KEY("PlaylistId") REFERENCES "Playlist" ("PlaylistId")
)/*
3 rows from PlaylistTrack table:
PlaylistId	TrackId
1	3402
1	3389
1	3390
*/
==================================[1m Ai Message [0m==================================The `PlaylistTrack` table has the following schema:- `PlaylistId` (INTEGER, NOT NULL): This is a foreign key that references the `Playlist` table and is part of the composite primary key.
- `TrackId` (INTEGER, NOT NULL): This is a foreign key that references the `Track` table and is also part of the composite primary key.The primary key for this table is a combination of `PlaylistId` and `TrackId`, which means that each track can only appear once in a given playlist. Here are a few sample rows from the `PlaylistTrack` table to illustrate:| PlaylistId | TrackId |
|------------|---------|
| 1          | 3402    |
| 1          | 3389    |
| 1          | 3390    |If you need more specific information or a query based on this table, please let me know!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/23231.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【前端小点】vue3项目内根据主题读取不同文件夹下的图片资源(图片文件)

项目要求实现一键换肤的功能&#xff0c;不仅仅是主题颜色上的替换&#xff0c;还有图片素材的替换&#xff0c;主题颜色替换的方案大同小异&#xff0c;下面仅对图片素材的一件替换进行方法描述。 主要思路 使用本地仓库对当前主题进行存储&#xff0c;系统根据主题去加载不同…

vxe-table实现动态列

vxe-table实现动态列 1.动态列解释2.解决步骤2.1将后端返回的动态列表头&#xff0c;按照格式拼接在固定列表头上2.2将后端返回的列表数据按照键值对格式组装 1.动态列解释 正常列表是有固定的列&#xff1b;我的需求是&#xff0c;最初只知道表格的固定两列&#xff0c;查询数…

Windows 11 使用容器(Docker Podman)

文章目录 背景1、相关网站1.1、WSL1.2、Docker1.3、Podman 2、环境3、安装部署3.1、安装 WSL3.2、Docker3.2.1、Docker Desktop3.2.1.1、安装3.2.1.2、拉取镜像3.2.1.3、启动容器 3.3、Podman3.3.1、安装3.3.2、使用3.3.3、异常处理 总结 背景 Windows 系统中使用容器&#xf…

UE_C++ —— Gameplay Modules

目录 一&#xff0c;Module Creation INI File Setup 二&#xff0c;Multiple Gameplay Modules 三&#xff0c;Limitations 编译成 DLL 的游戏相关类的集合&#xff1b;正如引擎本身由一组模块构成一样&#xff0c;每个游戏也是由一个或多个游戏模块构成的&#xff1b;这些…

蓝桥杯定时器实现led闪烁

step1.配置定时器&#xff0c;TIM1时高级定时&#xff0c;TIM2是通用定时器&#xff0c;用TIM2就行&#xff0c;用内部时钟源&#xff0c;记住相关公式&#xff0c;定时器中断配置时要使能&#xff0c;且生成代码后也要在mian中写使能函数 step2.写代码 配置生成代码后多出的…

二:前端发送POST请求,后端获取数据

接着一&#xff1a;可以通过端口访问公网IP之后 二需要实现&#xff1a;点击飞书多维表格中的按钮&#xff0c;向服务器发送HTTP请求&#xff0c;并执行脚本程序 向服务器发送HTTP请求&#xff1a; 发送请求需要明确一下几个点 请求方法&#xff1a; 由于是向服务器端发送值…

内外网文件传输 安全、可控、便捷的跨网数据传输方案

一、背景与痛点 在内外网隔离的企业网络环境中&#xff0c;员工与外部协作伙伴&#xff08;如钉钉用户&#xff09;的文件传输面临以下挑战&#xff1a; 安全性风险&#xff1a;内外网直连可能导致病毒传播、数据泄露。 操作繁琐&#xff1a;传统方式需频繁切换网络环境&…

elasticsearch在windows上的配置

写在最前面&#xff1a; 上资源 第一步 解压&#xff1a; 第二步 配置两个环境变量 第三步 如果是其他资源需要将标蓝的文件中的内容加一句 xpack.security.enabled: false 不同版本的yaml文件可能配置不同&#xff0c;末尾加这个 xpack.security.enabled: true打开bin目…

OpenCV二值化处理

1.1. 为什么需要二值化操作 二值化操作将灰度图像转换为黑白图像&#xff0c;即将图像中的像素值分为两类&#xff1a;前景&#xff08;通常为白色&#xff0c;值为 255&#xff09;和背景&#xff08;通常为黑色&#xff0c;值为 0&#xff09;。二值化的主要目的是简化图像&…

[Android]浏览器下载的apk文件无法识别无法安装问题

在Android电话机上&#xff0c;用浏览器下载apk进行版本更新&#xff0c;出现下载文件没被识别为apk&#xff0c;导致无法安装问题。 原来的下载链接&#xff1a; https://mojsetup.obs.cn-southwest-2.myhuaweicloud.com/callphone-release-1.0.4.apk 修改后的下载链接&…

如何使用SSH连接设备?很简单!

前言 小白发现最近写的文章都与SSH息息相关&#xff0c;于是就有了这一篇文章&#xff0c;免得在后续的文章又不断重复如何SSH连接设备。 有需要的小伙伴自然就会看到这里&#xff0c;也不会影响到其他小伙伴的阅读体验。 至于文章里的广告嘛……就当是小伙伴们给小白的一点…

【自学嵌入式(9)ESP8266网络服务器的使用】

ESP8266网络服务器的使用 ESP8266WiFi 库① WiFiClass② WiFiClient③ WiFiServer④ WiFiUDP ESP8266WiFiMulti 库① WiFiMulti ESP8266WebServer 库① P8266WebServer 网络服务器实例在浏览器中控制ESP8266指示灯将开发板引脚状态显示在网页中 在之前的文章中&#xff0c;曾经…

pytorch3d安装记录

官方安装教程&#xff1a; https://github.com/facebookresearch/pytorch3d/blob/main/INSTALL.md 通过pip 或conda 可以很容易安装上预编译好的包&#xff0c; 安装过程不会报错&#xff0c; 但是使用的时候就会报各种错误 &#xff0c;原因是预编译好的包跟自己的环境不一定…

【CVPR2024-工业异常检测】PromptAD:与只有正常样本的少样本异常检测的学习提示

代码链接 摘要 摘要写作总结&#xff1a; 1.提出 两个关键点 &#xff08;视觉语言模型【模型】 少量工业异常检测【方向】&#xff09; 2.想要解决的问题 3.针对上述问题&#xff0c;本文提出了一种什么【方法】的什么【应用方面】方法【模型名】 4.具体讲方法的步骤 5.实验…

【PostgreSQL】如何通过调整PostgreSQL配置参数提高数据库性能

如何通过调整PostgreSQL配置参数提高数据库性能 1. 数据库初始性能2. 内存相关参数3. WAL&#xff08;Write-Ahead Logging&#xff09;相关参数4. 并行查询相关参数5. 连接相关参数6. 根据情况调整 1. 数据库初始性能 使用pgbench在更新PostgreSQL数据库配置前先测试下数据库…

AI Agent实战:打造京东广告主的超级助手 | 京东零售技术实践

前言 自2022年末ChatGPT的问世&#xff0c;大语言模型&#xff08;LLM&#xff09;技术引发全球关注。在大模型技术落地的最佳实践中&#xff0c;智能体&#xff08;Agent&#xff09;架构显现出巨大潜力&#xff0c;成为业界的普遍共识&#xff0c;各大公司也纷纷启动Agent技…

从【人工智能】到【计算机视觉】,【深度学习】引领的未来科技创新与变革

前几天偶然发现了一个超棒的人工智能学习网站&#xff0c;内容通俗易懂&#xff0c;讲解风趣幽默&#xff0c;简直让人欲罢不能。忍不住分享给大家&#xff0c;点击这里立刻跳转&#xff0c;开启你的AI学习之旅吧&#xff01; 前言 – 人工智能教程https://www.captainbed.cn/l…

ChātGPT赋能的“SolidWorks工具箱”:重塑3D设计效率新标杆

ChātGPT精心打造的“SolidWorks工具箱”正逐步成为3D设计领域中的一颗璀璨新星&#xff0c;其集高效、便捷与创新于一身&#xff0c;为用户带来了前所未有的设计体验。以下是对这一革命性工具箱的深度剖析与美化呈现&#xff1a; 一、核心功能&#xff1a;重塑设计流程&#x…

php处理图片出现内存溢出(Allowed memory size of 134217728 bytes exhausted)

错误&#xff1a; 最近做图片上传功能时发现上传某些图片时报内存溢出错误。如下所示&#xff1a; {"code": 0,"msg": "Allowed memory size of 134217728 bytes exhausted (tried to allocate 24576 bytes)","data": {"code&q…

Spring——SpringSecurity开发经验实战

摘要 本文介绍了一个简单的 Spring Security 实战示例&#xff0c;涵盖基本的身份验证和授权流程。首先介绍了 Spring Security 是一个强大的安全框架&#xff0c;用于在 Spring 应用中实现身份验证、授权以及保护应用免受常见安全攻击。接着详细阐述了项目结构、添加 Spring …