einops测试

文章目录

  • 1. einops
  • 2. code
  • 3. pytorch

1. einops

einops 主要是通过爱因斯坦标记法来处理张量矩阵的库,让矩阵处理上非常简单。

  • conda :
conda install conda-forge::einops
  • python:

2. code

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat, reducetorch.set_printoptions(precision=3, sci_mode=False)if __name__ == "__main__":run_code = 0x = torch.arange(96).reshape((2, 3, 4, 4)).to(torch.float32)print(f"x.shape={x.shape}")print(f"x=\n{x}")# 1. 转置x_torch_trans = x.transpose(1, 2)x_einops_trans = rearrange(x, 'b i w h -> b w i h')x_check_trans = torch.allclose(x_torch_trans, x_einops_trans)print(f"x_torch_trans is {x_check_trans} same with x_einops_trans")# 2. 变形x_torch_reshape = x.reshape(6, 4, 4)x_einops_reshape = rearrange(x, 'b i w h -> (b i) w h')x_check_reshape = torch.allclose(x_torch_reshape, x_einops_reshape)print(f"x_einops_reshape is {x_check_reshape} same with x_check_reshape")# 3. image2patchimage2patch = rearrange(x, 'b i (h1 p1) (w1 p2) -> b i (h1 w1) p1 p2', p1=2, p2=2)print(f"image2patch.shape={image2patch.shape}")print(f"image2patch=\n{image2patch}")image2patch2 = rearrange(image2patch, 'b i j h w -> b (i j) h w')print(f"image2patch2.shape={image2patch2.shape}")print(f"image2patch2=\n{image2patch2}")y = torch.arange(24).reshape((2, 3, 4)).to(torch.float32)y_einops_mean = reduce(y, 'b h w -> b h', 'mean')print(f"y=\n{y}")print(f"y_einops_mean=\n{y_einops_mean}")y_tensor = torch.arange(24).reshape(2, 2, 2, 3)y_list = [y_tensor, y_tensor, y_tensor]y_output = rearrange(y_list, 'n b i h w -> n b i h w')print(f"y_tensor=\n{y_tensor}")print(f"y_output=\n{y_output}")z_tensor = torch.arange(12).reshape(2, 2, 3).to(torch.float32)z_tensor_1 = rearrange(z_tensor, 'b h w -> b h w 1')print(f"z_tensor=\n{z_tensor}")print(f"z_tensor_1=\n{z_tensor_1}")z_tensor_2 = repeat(z_tensor_1, 'b h w 1 -> b h w 2')print(f"z_tensor_2=\n{z_tensor_2}")z_tensor_repeat = repeat(z_tensor, 'b h w -> b (2 h) (2 w)')print(f"z_tensor_repeat=\n{z_tensor_repeat}")
  • python:
x.shape=torch.Size([2, 3, 4, 4])
x=
tensor([[[[ 0.,  1.,  2.,  3.],[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.],[12., 13., 14., 15.]],[[16., 17., 18., 19.],[20., 21., 22., 23.],[24., 25., 26., 27.],[28., 29., 30., 31.]],[[32., 33., 34., 35.],[36., 37., 38., 39.],[40., 41., 42., 43.],[44., 45., 46., 47.]]],[[[48., 49., 50., 51.],[52., 53., 54., 55.],[56., 57., 58., 59.],[60., 61., 62., 63.]],[[64., 65., 66., 67.],[68., 69., 70., 71.],[72., 73., 74., 75.],[76., 77., 78., 79.]],[[80., 81., 82., 83.],[84., 85., 86., 87.],[88., 89., 90., 91.],[92., 93., 94., 95.]]]])
x_torch_trans is True same with x_einops_trans
x_einops_reshape is True same with x_check_reshape
image2patch.shape=torch.Size([2, 3, 4, 2, 2])
image2patch=
tensor([[[[[ 0.,  1.],[ 4.,  5.]],[[ 2.,  3.],[ 6.,  7.]],[[ 8.,  9.],[12., 13.]],[[10., 11.],[14., 15.]]],[[[16., 17.],[20., 21.]],[[18., 19.],[22., 23.]],[[24., 25.],[28., 29.]],[[26., 27.],[30., 31.]]],[[[32., 33.],[36., 37.]],[[34., 35.],[38., 39.]],[[40., 41.],[44., 45.]],[[42., 43.],[46., 47.]]]],[[[[48., 49.],[52., 53.]],[[50., 51.],[54., 55.]],[[56., 57.],[60., 61.]],[[58., 59.],[62., 63.]]],[[[64., 65.],[68., 69.]],[[66., 67.],[70., 71.]],[[72., 73.],[76., 77.]],[[74., 75.],[78., 79.]]],[[[80., 81.],[84., 85.]],[[82., 83.],[86., 87.]],[[88., 89.],[92., 93.]],[[90., 91.],[94., 95.]]]]])
image2patch2.shape=torch.Size([2, 12, 2, 2])
image2patch2=
tensor([[[[ 0.,  1.],[ 4.,  5.]],[[ 2.,  3.],[ 6.,  7.]],[[ 8.,  9.],[12., 13.]],[[10., 11.],[14., 15.]],[[16., 17.],[20., 21.]],[[18., 19.],[22., 23.]],[[24., 25.],[28., 29.]],[[26., 27.],[30., 31.]],[[32., 33.],[36., 37.]],[[34., 35.],[38., 39.]],[[40., 41.],[44., 45.]],[[42., 43.],[46., 47.]]],[[[48., 49.],[52., 53.]],[[50., 51.],[54., 55.]],[[56., 57.],[60., 61.]],[[58., 59.],[62., 63.]],[[64., 65.],[68., 69.]],[[66., 67.],[70., 71.]],[[72., 73.],[76., 77.]],[[74., 75.],[78., 79.]],[[80., 81.],[84., 85.]],[[82., 83.],[86., 87.]],[[88., 89.],[92., 93.]],[[90., 91.],[94., 95.]]]])
y=
tensor([[[ 0.,  1.,  2.,  3.],[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.]],[[12., 13., 14., 15.],[16., 17., 18., 19.],[20., 21., 22., 23.]]])
y_einops_mean=
tensor([[ 1.500,  5.500,  9.500],[13.500, 17.500, 21.500]])
y_tensor=
tensor([[[[ 0,  1,  2],[ 3,  4,  5]],[[ 6,  7,  8],[ 9, 10, 11]]],[[[12, 13, 14],[15, 16, 17]],[[18, 19, 20],[21, 22, 23]]]])
y_output=
tensor([[[[[ 0,  1,  2],[ 3,  4,  5]],[[ 6,  7,  8],[ 9, 10, 11]]],[[[12, 13, 14],[15, 16, 17]],[[18, 19, 20],[21, 22, 23]]]],[[[[ 0,  1,  2],[ 3,  4,  5]],[[ 6,  7,  8],[ 9, 10, 11]]],[[[12, 13, 14],[15, 16, 17]],[[18, 19, 20],[21, 22, 23]]]],[[[[ 0,  1,  2],[ 3,  4,  5]],[[ 6,  7,  8],[ 9, 10, 11]]],[[[12, 13, 14],[15, 16, 17]],[[18, 19, 20],[21, 22, 23]]]]])
z_tensor=
tensor([[[ 0.,  1.,  2.],[ 3.,  4.,  5.]],[[ 6.,  7.,  8.],[ 9., 10., 11.]]])
z_tensor_1=
tensor([[[[ 0.],[ 1.],[ 2.]],[[ 3.],[ 4.],[ 5.]]],[[[ 6.],[ 7.],[ 8.]],[[ 9.],[10.],[11.]]]])
z_tensor_2=
tensor([[[[ 0.,  0.],[ 1.,  1.],[ 2.,  2.]],[[ 3.,  3.],[ 4.,  4.],[ 5.,  5.]]],[[[ 6.,  6.],[ 7.,  7.],[ 8.,  8.]],[[ 9.,  9.],[10., 10.],[11., 11.]]]])
z_tensor_repeat=
tensor([[[ 0.,  1.,  2.,  0.,  1.,  2.],[ 3.,  4.,  5.,  3.,  4.,  5.],[ 0.,  1.,  2.,  0.,  1.,  2.],[ 3.,  4.,  5.,  3.,  4.,  5.]],[[ 6.,  7.,  8.,  6.,  7.,  8.],[ 9., 10., 11.,  9., 10., 11.],[ 6.,  7.,  8.,  6.,  7.,  8.],[ 9., 10., 11.,  9., 10., 11.]]])

3. pytorch

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/23272.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity教程(二十一)技能系统 基础部分

Unity开发2D类银河恶魔城游戏学习笔记 Unity教程(零)Unity和VS的使用相关内容 Unity教程(一)开始学习状态机 Unity教程(二)角色移动的实现 Unity教程(三)角色跳跃的实现 Unity教程&…

Docker:Docker从入门到精通(一)- Docker简介

一、前言 通过本专栏的学习,我们将了解   1. 掌握Docker基础知识,能够理解Docker镜像与容器的概念   2. 完成Docker安装与启动   3. 掌握Docker镜像与容器相关命令   4. 掌握Tomcat Nginx 等软件的常用应用的安装   5. 掌握docker迁移与备份相…

单机上使用docker搭建minio集群

单机上使用docker搭建minio集群 1.集群安装1.1前提条件1.2步骤指南1.2.1安装 Docker 和 Docker Compose(如果尚未安装)1.2.2编写docker-compose文件1.2.3启动1.2.4访问 2.使用2.1 mc客户端安装2.2创建一个连接2.3简单使用下 这里在ubuntu上单机安装一个m…

Image Downloader下载文章图片的WordPress插件

源码介绍 一个用于下载图片的WordPress插件,包含下载统计功能,支持任何主题使用 用户点击下载后自动打包该文章所有原始图片,并把文章标题作为压缩包的文件名。 不占用服务器空间,也不占网盘空间,直接利用浏览器的性…

PLC通讯

PPI通讯 是西门子公司专为s7-200系列plc开发的通讯协议。内置于s7-200 CPU中。PPI协议物理上基于RS-485口,通过屏蔽双绞线就可以实现PPI通讯。PPI协议是一种主-从协议。主站设备发送要求到从站设备,从站设备响应,从站不能主动发出信息。主站…

VScode+stfp插件,实现文件远程同步保存【2025实操有效】

目录 1 痛点2 准备工作3 操作步骤3.1 第一步,下载STFP插件3.2 第二步,修改配置文件3.3 第三步,测试是否成功 4 后记 1 痛点 我一直用vscode远程连接服务器,传代码文件等到服务器上面,突然有一次服务器那边尽心维修&am…

【quicker】调节PPT指定字号字体大小/快速调节WPS的PPT字体大小

在quicker的拓展动作中找不到直接指定字号大小方式的动作。 换个思路,既然无法通过alt键模拟,不如模拟右键菜单触发?尝试过失败了 所以有了第三种方法 ,首先给字体窗口设置快捷键,此处设置的是altshiftf,然…

Grouped-Query Attention(GQA)详解: Pytorch实现

Grouped-Query Attention(GQA)详解 Grouped-Query Attention(GQA) 是 Multi-Query Attention(MQA) 的改进版,它通过在 多个查询头(Query Heads)之间共享 Key 和 Value&am…

百度百舸 DeepSeek 一体机发布,支持昆仑芯 P800 单机 8 卡满血版开箱即用

在私有云环境中成功部署 DeepSeek 满血版并实现性能调优,并不是一件容易的事情。选择合适的 GPU 配置、安装相应的环境、成功部署上线业务、加速推理任务加速、支撑多用户并发 …… 完成业务测试,成功融入生产业务中。 为了帮助企业快速实现 DeepSeek 服…

c++入门-------命名空间、缺省参数、函数重载

C系列 文章目录 C系列前言一、命名空间二、缺省参数2.1、缺省参数概念2.2、 缺省参数分类2.2.1、全缺省参数2.2.2、半缺省参数 2.3、缺省参数的特点 三、函数重载3.1、函数重载概念3.2、构成函数重载的条件3.2.1、参数类型不同3.2.2、参数个数不同3.2.3、参数类型顺序不同 前言…

tortoiseGit的使用和上传拉取

tortoiseGit的使用和上传拉取 下载TortoiseGit 通过网盘分享的文件:tortoiseGit.zip 链接: https://pan.baidu.com/s/1EOT_UsM9_OysRqXa8gES4A?pwd1234 提取码: 1234 在电脑桌面新建文件夹并进入 右击鼠标 将网址复制上去 用户名和密码是在git注册的用户名和…

Mybatis学习总结

官网 概念 用于简化JDBC的开发。 在配置mybatis的时候如果没有建立连接识别不了信息,我们需要在idea配置mysql的配置信息 JDBC是一套操作关系数据库的API,有效率,和mybatis比起来资源节约,性能高,不繁琐。 数据库连…

SQL笔记#数据更新

一、数据的插入(INSERT语句的使用方法) 1、什么是INSERT 首先通过CREATE TABLE语句创建表,但创建的表中没有数据;再通过INSERT语句向表中插入数据。 --创建表ProductIns CREATE TABLE ProductIns (product_id CHAR(4) NOT NULL,product_name …

dockerfile构建haproxy

1. 结构目录 [rootlocalhost ~]# tree haproxy/ haproxy/ ├── dockerfile └── files├── haproxy-2.5.0.tar.gz├── haproxy.cfg├── install.sh└── start.sh1 directory, 5 files [rootlocalhost ~]# [rootlocalhost ~]# cd haproxy/ [rootlocalhost haproxy]…

Docker(Nginx)部署Vue

简介:目标使用docker将vue生成的dist文件,结合nginx生成镜像,然后运行; 1、首选确保vue项目正确运行,并能正确打包dist文件; 2、查看已经生成的dist文件 3、将dist文件打包为rar文件或者zip文件&#xf…

C++——模版(二)

前言 我们前面讲过模版的一,不知道大家还有没有所印象,如果大家不太能回忆起来可以再去前面看一下,那通过我们讲解了几个容器之后,相信大家现在应该已经对模版很熟悉了,那模版还剩下一些其他的内容我们就在这里进行讲…

算法与数据结构(旋转链表)

题目 思路 每个节点向右移动k个位置,其实就是从头开始遍历,将n-k个节点顺序插入到链表的尾部。 如上图所示的示例1,先将1插入到5的后面,再将2插入到1的后面,最后将3插入到2的后面即可。 代码详解 定义一个cur变量用…

TOGAF之架构标准规范-信息系统架构 | 应用架构

TOGAF是工业级的企业架构标准规范,信息系统架构阶段是由数据架构阶段以及应用架构阶段构成,本文主要描述信息系统架构阶段中的应用架构阶段。 如上所示,信息系统架构(Information Systems Architectures)在TOGAF标准规…

智能优化算法:莲花算法(Lotus flower algorithm,LFA)介绍,提供MATLAB代码

一、 莲花算法 1.1 算法原理 莲花算法(Lotus flower algorithm,LFA)是一种受自然启发的优化算法,其灵感来源于莲花的自清洁特性和授粉过程。莲花的自清洁特性,即所谓的“莲花效应”,是由其叶片表面的微纳…

CSS 媒体查询:从入门到精通,打造跨设备完美体验

在当今移动互联网时代,用户访问网站的设备早已不再局限于桌面电脑,手机、平板等各种屏幕尺寸的设备层出不穷。为了确保用户在不同设备上都能获得良好的浏览体验,响应式网页设计应运而生。而 CSS 媒体查询,正是实现响应式设计的核心…