DDIM学习笔记

写在前面:
(1)建议看这篇论文之前,可先看我写的前一篇论文:
DDPM推导笔记-大白话推导

主要学习和参考了以下文章:
(1)一文带你看懂DDPM和DDIM
(2)关于 DDIM 采样算法的推导

0. DDIM的创新点

​ DDPM有一个很大的缺点就是其本身是一个马尔科夫链的过程,推理速度太慢,如果前向加噪过程是1000步,那么去噪过程就需要使用Unet生成噪声,然后去噪,这样进行1000步。这是一个及其缓慢的过程,DDIM原论文中举了一个生动的例子:

For example, it takes around 20 hours to sample 50k images of size 32 x 32 from a DDPM, but less than a minute to do so from a GAN on a Nvidia 2080 Ti GPU.

​ 基于DDPM,DDIM主要有两项改进:

​ (1)对于一个已经训练好的DDPM,只需要对采样公式做简单的修改,模型就能在去噪时「跳步骤」,在一步去噪迭代中直接预测若干次去噪后的结果。比如说,假设模型从时刻T=100开始去噪,新的模型可以在每步去噪迭代中预测10次去噪操作后的结果,也就是逐步预测时刻t=90,80,…,0的结果。这样,DDPM的采样速度就被加速了10倍。

​ (2)DDIM论文推广了DDPM的数学模型,打破了马尔科夫链的过程,从更高的视角定义了DDPM的反向过程(去噪过程)。在这个新数学模型下,我们可以自定义模型的噪声强度,让同一个训练好的DDPM有不同的采样效果。

1. 公式推导

​ DDPM的推导过程可以看《DDPM推导笔记》,这里假设 P ( x t − 1 ∣ x t , x 0 ) P(x_{t-1}|x_t, x_0) P(xt1xt,x0)满足如下正态分布,即:
P ( x t − 1 ∣ x t , x 0 ) ∼ N ( k x 0 + m x t , σ 2 ) 即 : x t − 1 = k x o + m x t + σ ϵ 其中有: ϵ ∼ N ( 0 , 1 ) (1) P(x_{t-1}|x_t, x_0) \sim N(kx_0+mx_t, \sigma^2) \\ 即:x_{t-1} = kx_o+mx_t + \sigma \epsilon \tag{1} \\ 其中有: \epsilon \sim N(0, 1) P(xt1xt,x0)N(kx0+mxt,σ2):xt1=kxo+mxt+σϵ其中有:ϵN(0,1)(1)
又因为前向的加噪过程满足:
x t = a t ˉ x 0 + 1 − a t ˉ ϵ 其中 ϵ ∼ N ( 0 , 1 ) (2) x_t = \sqrt{\bar{a_t}} x_0 + \sqrt{1 - \bar{a_t}} \epsilon \\ 其中\epsilon \sim N(0,1) \tag{2} xt=atˉ x0+1atˉ ϵ其中ϵN(0,1)(2)
合并(1)(2)上面两式,有:
x t − 1 = k x 0 + m [ a ˉ t x 0 + 1 − a ˉ t ϵ ] + σ ϵ (3) x_{t-1} = kx_0 + m[\sqrt{\bar{a}_t}x_0 + \sqrt{1-\bar{a}_t} \epsilon] + \sigma \epsilon \tag{3} xt1=kx0+m[aˉt x0+1aˉt ϵ]+σϵ(3)
再次合并有:
x t − 1 = ( k + m a ˉ t ) x 0 + ϵ ′ 其中: ϵ ’ ∼ M ( 0 , m 2 ( 1 − a ˉ t ) + σ 2 ) (4) x_{t-1} = (k+m\sqrt{\bar{a}_t}) x_0 + \epsilon' \\ 其中: \epsilon’ \sim M(0, m^2(1-\bar{a}_t) + \sigma^2) \tag{4} xt1=(k+maˉt )x0+ϵ其中:ϵM(0,m2(1aˉt)+σ2)(4)
从DDPM中可以可知:
x t − 1 = a ˉ t − 1 x 0 + 1 − a ˉ t − 1 ϵ (5) x_{t-1} = \sqrt{\bar{a}_{t-1}} x_0 + \sqrt{1-\bar{a}_{t-1}} \epsilon \tag{5} xt1=aˉt1 x0+1aˉt1 ϵ(5)
通过式(4)(5)的 x t − 1 x_{t-1} xt1服从的概率分布可知:
k + m a ˉ t = a ˉ t − 1 m 2 ( 1 − a ˉ t ) + σ 2 = 1 − a ˉ t − 1 (6) k + m\sqrt{\bar{a}_t} = \sqrt{\bar{a}_{t-1}} \\ m^2(1-\bar{a}_t) + \sigma^2 = 1-\bar{a}_{t-1} \tag{6} k+maˉt =aˉt1 m2(1aˉt)+σ2=1aˉt1(6)
由式(6)两个式子可解出:

将m,k带入到 P ( x t − 1 ∣ x t , x 0 ) P(x_{t-1}|x_t, x_0) P(xt1xt,x0)中,可得:

在这里插入图片描述

依旧可以使用 x t , x 0 x_t, x_0 xt,x0的关系式把 x 0 x_0 x0去掉:
x t = a t ˉ x 0 + 1 − a t ˉ ϵ 这里为了防止 ϵ 和后面的 ϵ 搞混,这里记为 ϵ t , 则上式变为: x t = a t ˉ x 0 + 1 − a t ˉ ϵ t (8) x_t = \sqrt{\bar{a_t}} x_0 + \sqrt{1 - \bar{a_t}} \epsilon \\ 这里为了防止\epsilon和后面的\epsilon搞混,这里记为\epsilon_{t},则上式变为:\\ x_t = \sqrt{\bar{a_t}} x_0 + \sqrt{1 - \bar{a_t}} \epsilon_t \tag{8} xt=atˉ x0+1atˉ ϵ这里为了防止ϵ和后面的ϵ搞混,这里记为ϵt,则上式变为:xt=atˉ x0+1atˉ ϵt(8)
P ( x t − 1 ∣ x t , x 0 ) P(x_{t-1}|x_t, x_0) P(xt1xt,x0)的概率分布采样可得到:
在这里插入图片描述

其中, ϵ \epsilon ϵ是从标准正太分布中,随机采样得到; ϵ t \epsilon_t ϵt是和DDPM一样,使用神经网络训练而来的; x t x_t xt是输入; a ˉ t − 1 和 a ˉ t \bar{a}_{t-1}和\bar{a}_t aˉt1aˉt是事先定义好的。至此,我们就只需要讨论 σ \sigma σ这个参数了。

2. σ \sigma σ的讨论

​ 怎样选取 σ \sigma σ才能获得最佳的加速效果呢?

​ 作者做了一些实验,作者原文中使用 σ τ i ( η ) \sigma_{\tau_i}{(\eta)} στi(η)来表示的 σ \sigma σ,其式子如下:
在这里插入图片描述

使用 η \eta η控制其大小。事实上,当 η = 1 \eta = 1 η=1时就变成了DDPM的去噪过程了,
在这里插入图片描述

η = 0 \eta=0 η=0时,效果是最好的。所以DDIM令 σ = 0 \sigma=0 σ=0

3. x p r e v x_{prev} xprev的推导

​ 从式9且 σ = 0 \sigma=0 σ=0,则式9中的所有都已知了!!!

​ 但是,即使这样,我们也还是由 x t 推导出 x t − 1 x_t推导出x_{t-1} xt推导出xt1呀,这样还是不能加快推理!

​ 不忙,我们回过头去思考,发现上面的推导过程中全程没有使用:
x t = a t x t − 1 + 1 − a t ϵ x_t= \sqrt{a_t}x_{t-1} + \sqrt{1-a_t} \epsilon xt=at xt1+1at ϵ
​ 也就可以不需要严格的由 x t 算到 x t − 1 x_t算到x_{t-1} xt算到xt1,则可以令 x p r e v 替代 x t − 1 x_{prev}替代x_{t-1} xprev替代xt1,式(9)则可以变换为:

在这里插入图片描述

​ 至此,所有的参数要是实现定义好了,要么是需要训练的,这样 x t 和 x p r e v x_t和x_{prev} xtxprev则可以相隔多个迭代步数。

4.疑难解答

Q1: 为什么式(11)可以简单的将 x p r e v 替代 x t − 1 x_{prev}替代x_{t-1} xprev替代xt1,毕竟虽然反向过程没有使用到 x t − 1 算到 x t x_{t-1}算到x_{t} xt1算到xt的关系式,但前向过程是使用到的呀?

​ 目前我也没有答案!还在理解中,由大佬路过,请留言讨论!

​ Q2: 为什么在DDIM可以令方差 σ = 0 \sigma=0 σ=0 ?

​ 目前我也没有答案!还在理解中,由大佬路过,请留言讨论!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/233609.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[Vulnhub靶机] DriftingBlues: 2

[Vulnhub靶机] DriftingBlues: 2靶机渗透思路及方法(个人分享) 靶机下载地址: https://download.vulnhub.com/driftingblues/driftingblues2.ova 靶机地址:192.168.67.21 攻击机地址:192.168.67.3 一、信息收集 1.…

【docker笔记】Docker网络

Docker网络 容器间的互联和通信以及端口映射 容器IP变动时候可以通过服务名直接网络通信而不受到影响 常用命令 查看网络 docker network ls创建网络 docker network create XXX网络名字查看网络源数据 docker network inspect XXX网络名字删除网络 docker network rm…

深入理解并解析Flutter Widget

文章目录 完整代码程序入口构建 Widget 结构定义 widget 状态定义 widget UI获取上下文关于build()build() 常用使用 完整代码 import package:english_words/english_words.dart; import package:flutter/material.dart; import package:provider/provider.dart;void main() …

PPT模板(100套IT科技互联网风)

哈喽,小伙伴们,最近是不是都在准备年终总结、年终述职,一个好的PPT模板是编写报告的开端。我最近也在准备年终总结报告,一块整理了一些PPT模板。这些模板适用于各种IT科技互联网相关的场合,如产品发布会、项目提案、工…

数据结构—排序—选择排序

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言 一、选择排序 1、基本思想 2、直接选择排序 3、选择排序的代码实现 二、堆排序 2.1算法讲解 2.2堆排序的代码实现 总结 前言 世上有两种耀眼的光芒&#xff0…

chatGPT带你学习设计模式 (二)抽象工厂模式(创建型模式) GURU

深入理解抽象工厂模式 引言 在面向对象编程中,对象的创建是一个常见且关键的挑战。尤其在需要管理一系列相关对象的创建时,传统的对象创建方法(如直接使用 new 关键字)可能导致代码的高耦合和低灵活性。这时,抽象工厂…

JSUDO|加速度与阿里云合作云产品

电讯:深圳市加速度软件开发有限公司【加速度jsudo】,与阿里云计算有限公司(简称“阿里云”)达成合作,双方将在电商、企业管理等应用软件领域就云产品和应用软件更深层次合作。 加速度软件长期以来,一直与阿…

jquery图形验证码

效果展示 js图形随机验证码&#xff08;表单验证&#xff09; html代码片段 <form class"formwrap"><div class"item"><input type"text" id"code_input" value"" placeholder"请输入验证码"/>…

网络调试 UDP1,开发板用动态地址-入门6

https://www.bilibili.com/video/BV1zx411d7eC?p11&vd_source109fb20ee1f39e5212cd7a443a0286c5 1, 开发板连接路由器 1.1&#xff0c;烧录无OS UDP例程 1.2&#xff0c;Mini USB连接电脑 1.3&#xff0c;开发板LAN接口连接路由器 2. Ping开发板与电脑之间通信* 2.1 根据…

探索PyTorch优化和剪枝技术相关的api函数

torch.nn子模块Utilities解析 clip_grad_norm_ torch.nn.utils.clip_grad_norm_ 是 PyTorch 深度学习框架中的一个函数&#xff0c;它主要用于控制神经网络训练过程中的梯度爆炸问题。这个函数通过裁剪梯度的范数来防止梯度过大&#xff0c;有助于稳定训练过程。 用途 防止…

java实验室预约管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 java servlet 实验室预约管理系统是一套完善的java web信息管理系统 系统采用serlvetdaobean&#xff08;mvc模式)&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数 据库&#xff0c;系统主要采用B/S模式开发。开发环境为T…

性能优化-OpenMP基础教程(四)-Android上运行OpenMP

本文主要介绍如何在一个常规的Android手机上调试OpenMP程序&#xff0c;包括Android NDK的环境配置和使用JNI编写一个OpenMP程序运行在Android手机中。 &#x1f3ac;个人简介&#xff1a;一个全栈工程师的升级之路&#xff01; &#x1f4cb;个人专栏&#xff1a;高性能&#…

ElasticSearch使用Grafana监控服务状态-Docker版

文章目录 版本信息构建docker-compose.yml参数说明 创建Prometheus配置文件启动验证配置Grafana导入监控模板模板说明 参考资料 版本信息 ElasticSearch&#xff1a;7.14.2 elasticsearch_exporter&#xff1a;1.7.0&#xff08;latest&#xff09; 下载地址&#xff1a;http…

WSL使用Ubuntu 20.04版本运行py-bottom-up-attention的记录,及其可能错误的解决方法

文章目录 1. 切换linux的镜像2. 安装gcc3. 查看显卡驱动4. 安装gcc版本5. wsl安装cuda 10.16. 新建虚拟环境8. 安装依赖包9. 运行代码错误运行的所有历史命令如下 WSL使用Ubuntu 20.04版本运行py-bottom-up-attention的记录&#xff0c;及其可能错误的解决方法 github代码地址…

线性渐变linear-gradient——线性渐变实现虚线斜线条纹

1.效果图 2.html <div class"box"><div class"address-edit"></div></div> 3.css <style>*{margin: 0;padding: 0;}.box{position: relative;width: 100vw;height: 300px;background-color: #fff;}.address-edit::before…

JetPack组件学习ViewModel

ViewModel的使用 1.需要先创建ViewModel类&#xff0c;继承自ViewModel重写onclear方法&#xff0c;使得页面销毁的时候能够走到自定义的onClear方法中 class MyViewModel : ViewModel() {//共享数据的核心在于拿到同一个LiveData实例&#xff0c;也就是拿到同一个ViewModel实…

如何成为ChatGPT 优质Prompt创作者

如何提问&#xff1f; 我想让你成为我的Prompt创作者。你的目标是帮助我创作最佳的Prompt&#xff0c;这个Prompt将由你ChatGPT使用。你将遵循 以下过程&#xff1a;1.首先&#xff0c;你会问我Prompt是关于什么&#xff1f;我会告诉你&#xff0c;但我们需要 通过不断的重复来…

Redis高并发高可用(主从复制、哨兵)

复制 在分布式系统中为了解决单点问题,通常会把数据复制多个副本部署到其他机器,满足故障恢复和负载均衡等需求。Redis也是如此,它为我们提供了复制功能,实现了相同数据的多个Redis 副本。复制功能是高可用Redis的基础,哨兵和集群都是在复制的基础上实现高可用的。 默认…

YOLOv8 Ultralytics:使用Ultralytics框架进行姿势估计

YOLOv8 Ultralytics&#xff1a;使用Ultralytics框架进行姿势估计 前言相关介绍前提条件实验环境安装环境项目地址LinuxWindows 使用Ultralytics框架进行姿势估计参考文献 前言 由于本人水平有限&#xff0c;难免出现错漏&#xff0c;敬请批评改正。更多精彩内容&#xff0c;可…

新手练习项目 4:简易2048游戏的实现(C++)

名人说&#xff1a;莫听穿林打叶声&#xff0c;何妨吟啸且徐行。—— 苏轼《定风波莫听穿林打叶声》 Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#xff09; 目录 一、效果图二、代码&#xff08;带注释&#xff09;三、说明 一、效果图 二、代码&#xff08;带…