Python将Labelme文件的真实框和预测框绘制到图片上

Python将Labelme文件的真实框和预测框绘制到图片上

  • 前言
  • 前提条件
  • 相关介绍
  • 实验环境
  • Python将Labelme文件的标注信息绘制到图片上
    • 代码实现
    • 输出结果

在这里插入图片描述

前言

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • YOLOv8 Ultralytics:使用Ultralytics框架训练RT-DETR实时目标检测模型
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

前提条件

  • 熟悉Python

相关介绍

  • Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
  • PyTorch 是一个深度学习框架,封装好了很多网络和深度学习相关的工具方便我们调用,而不用我们一个个去单独写了。它分为 CPU 和 GPU 版本,其他框架还有 TensorFlow、Caffe 等。PyTorch 是由 Facebook 人工智能研究院(FAIR)基于 Torch 推出的,它是一个基于 Python 的可续计算包,提供两个高级功能:1、具有强大的 GPU 加速的张量计算(如 NumPy);2、构建深度神经网络时的自动微分机制。
  • YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。它是一个在COCO数据集上预训练的物体检测架构和模型系列,代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。
  • Labelme是一款图像标注工具,由麻省理工(MIT)的计算机科学和人工智能实验室(CSAIL)研发。它是用Python和PyQT编写的,开源且免费。Labelme支持Windows、Linux和Mac等操作系统。
  • 这款工具提供了直观的图形界面,允许用户在图像上标注多种类型的目标,例如矩形框、多边形、线条等,甚至包括更复杂的形状。标注结果以JSON格式保存,便于后续处理和分析。这些标注信息可以用于目标检测、图像分割、图像分类等任务。
  • 总的来说,Labelme是一款强大且易用的图像标注工具,可以满足不同的图像处理需求。
  • Labelme标注json文件是一种用于存储标注信息的文件格式,它包含了以下几个主要的字段:
    • version: Labelme的版本号,例如"4.5.6"。
    • flags: 一些全局的标志,例如是否是分割任务,是否有多边形,等等。
    • shapes: 一个列表,每个元素是一个字典,表示一个标注对象。每个字典包含了以下几个字段:
      • label: 标注对象的类别名称,例如"dog"。
      • points: 一个列表,每个元素是一个坐标对,表示标注对象的边界点,例如[[10, 20], [30, 40]]。
      • group_id: 标注对象的分组编号,用于表示属于同一组的对象,例如1。
      • shape_type: 标注对象的形状类型,例如"polygon",“rectangle”,“circle”,等等。
      • flags: 一些针对该标注对象的标志,例如是否是难例,是否被遮挡,等等。
    • lineColor: 标注对象的边界线颜色,例如[0, 255, 0, 128]。
    • fillColor: 标注对象的填充颜色,例如[255, 0, 0, 128]。
    • imagePath: 图像文件的相对路径,例如"img_001.jpg"。
    • imageData: 图像文件的二进制数据,经过base64编码后的字符串,例如"iVBORw0KGgoAAAANSUhEUgAA…"。
    • imageHeight: 图像的高度,例如600。
    • imageWidth: 图像的宽度,例如800。

以下是一个Labelme标注json文件的示例:

{"version": "4.5.6","flags": {},"shapes": [{"label": "dog","points": [[121.0,233.0],[223.0,232.0],[246.0,334.0],[121.0,337.0]],"group_id": null,"shape_type": "polygon","flags": {}}],"lineColor": [0,255,0,128],"fillColor": [255,0,0,128],"imagePath": "img_001.jpg","imageData": "iVBORw0KGgoAAAANSUhEUgAA...","imageHeight": 600,"imageWidth": 800
}

实验环境

  • Python 3.x (面向对象的高级语言)

Python将Labelme文件的标注信息绘制到图片上

  • 项目结构
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码实现

import os
import cv2
import json
import copydef query_info_in_json_and_rectangle(in_img_path,real_json_path,pred_json_path,out_img_path):'''查询json文件的信息并绘制'''img = cv2.imread(in_img_path)# 绘制真实框with open(real_json_path,'r') as f:json_data = json.load(f)# print(json_data)# 以查询label信息为例,比如输出'label' == "49"的标注信息json_data_shape =  copy.deepcopy(json_data['shapes'])if json_data_shape != []:for i in json_data_shape:x1 = int(i['points'][0][0])y1 = int(i['points'][0][1])x2 = int(i['points'][1][0])y2 = int(i['points'][1][1])xmin = min(x1,x2)ymin = min(y1,y2)xmax = max(x1,x2)ymax = max(y1,y2)label_name = i['label']cv2.rectangle(img,(xmin,ymin),(xmax,ymax),(0, 0, 255), 2, cv2.LINE_AA)cv2.putText(img,label_name,(xmin-5,ymin), cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,255),2)# 绘制预测框with open(pred_json_path,'r') as f:json_data = json.load(f)# print(json_data)# 以查询label信息为例,比如输出'label' == "49"的标注信息json_data_shape =  copy.deepcopy(json_data['shapes'])if json_data_shape != []:for i in json_data_shape:x1 = int(i['points'][0][0])y1 = int(i['points'][0][1])x2 = int(i['points'][1][0])y2 = int(i['points'][1][1])xmin = min(x1,x2)ymin = min(y1,y2)xmax = max(x1,x2)ymax = max(y1,y2)label_name = i['label']cv2.rectangle(img,(xmin,ymin),(xmax,ymax),(255, 0, 0), 1, cv2.LINE_AA)cv2.putText(img,label_name,(xmin-5,ymin), cv2.FONT_HERSHEY_SIMPLEX, 1,(255,0,0),1)cv2.imwrite(out_img_path,img)else: # 无标注信息保存原图cv2.imwrite(out_img_path,img)if __name__=="__main__":in_img_dir = 'images/'real_json_dir = 'jsons/'pred_json_dir = 'results/'output_dir = 'output_imgs/'if not os.path.exists(output_dir):os.mkdir(output_dir) img_name_list = [i for i in os.listdir(in_img_dir) if i.endswith('.png') or i.endswith('.jpg') or i.endswith('.tif') or i.endswith('.jpeg') or i.endswith('.bmp')]# print(img_name_list)for img_name in img_name_list:in_img_path = in_img_dir + img_nameif img_name.endswith('.jpeg'):real_json_path = real_json_dir + img_name[:-5]+'.json'pred_json_path = pred_json_dir + img_name[:-5]+'.json'else:real_json_path = real_json_dir + img_name[:-4]+'.json'pred_json_path = pred_json_dir + img_name[:-4]+'.json'out_img_path = output_dir + img_name# 将Labelme文件的标注信息绘制到图片上query_info_in_json_and_rectangle(in_img_path,real_json_path,pred_json_path,out_img_path)

输出结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 注:真实框(红色),预测框(蓝色)
  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • YOLOv8 Ultralytics:使用Ultralytics框架训练RT-DETR实时目标检测模型
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/233655.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

qt信号和槽

Qt是一个跨平台的C图形用户界面应用框架 91年奇趣科技开发 pro工程文件介绍 .pro就是工程文件(project),它是qmake自动生成的用于生产makefile的配置文件 QT core gui //Qt包含的模块greaterThan(QT_MAJOR_VERSION, 4): QT widgets //大于4版本包含…

2024.1.2 Redis 数据类型 Stream、Geospatial、HyperLogLog、Bitmaps、Bitfields 简介

目录 引言 Stream 类型 Geospatial 类型 HyperLogLog 类型 Bitmaps 类型 Bitfields 类型 引言 Redis 最关键(应用广泛、频繁使用)的五个数据类型 StringListHashSetZSet 下文介绍的数据类型一般适合在特定的场景中使用! Stream 类型 St…

强化学习的数学原理学习笔记 - 基于模型(Model-based)

文章目录 概览:RL方法分类基于模型(Model-Based)值迭代(Value Iteration)🟦策略迭代(Policy Iteration)🟡截断策略迭代(Truncated Policy Iteration&#xff…

EasyRecovery2024永久免费版电脑数据恢复软件

EasyRecovery是一款操作安全、价格便宜、用户自主操作的非破坏性的只读应用程序,它不会往源驱上写任何东西,也不会对源驱做任何改变。它支持从各种各样的存储介质恢复删除或者丢失的文件,其支持的媒体介质包括:硬盘驱动器、光驱、…

特征工程(一)

特征工程(一) 什么是特征工程 简单来讲将数据转换为能更好地表示潜在问题的特征,从而提高机器学习性能 特征工程包含的内容 转换数据的过程特征更好地表示潜在问题提高机器学习性能 数据和机器学习的基础知识 数据基础 以下为数据的一…

计算机网络(超级详细笔记)

使用教材计算机网络(第8版)(谢希仁) 第一章:概述 第二章:物理层 第三章:数据链路层 第四章:网络层 第五章:运输层 第六章:应用层 目…

适合培训协会搭建的培训机构管理系统开发方案

一、项目背景与目标 (一)项目背景 培训学校教务管理系统是培训机构数字化管理的必备系统,该系统功能大大提升机构办学的管理效率、提升机构在家长心中的专业度,市面上的培训机构管理系统收费越来越贵,为了给协会内培…

【陈老板赠书活动 - 21期】- Python树莓派编程从零开始(第3版)

陈老老老板🧙‍♂️ 👮‍♂️本文专栏:赠书活动专栏(为大家争取的福利,免费送书) 🤴本文简述:活就像海洋,只有意志坚强的人,才能到达彼岸。 👳‍♂️上一篇文章&#xff…

微信小程序实战-01翻页时钟-1

文章目录 前言需求分析功能设计界面设计界面结构设计界面样式设计 逻辑设计 单页功能实现运行结果 前言 我经常在手机上用的一款app有一个功能是翻页时钟,基于之前学习的小程序相关的基础内容,我打算在微信小程序中也设计一个翻页时钟功能,J…

ArcGIS小技巧|四种计算图斑面积的方法

ArcGIS中有多种方法可计算出图斑面积,本文总结了四种方法,是否可堪称史上最全? 1、计算几何 这是最适合非专业人士的方法,直接利用ArcGIS中的计算几何功能进行计算。 a、首先添加一double类型字段,用来存储面积数值…

移动通信原理与关键技术学习(2)

1.多径信道滤波器表示,多径信道可以认为是线性时变滤波器,接收信号为发送信号与信道冲激响应的卷积。 2.调制就是对信号源的信息进行处理加到载波上,使其变为适合于信道传输的形式的过程,就是使载波随信号而改变的技术。 3.进行调…

基于 Python+Neo4j+医药数据,构建了一个知识图谱的自动问答系统

知识图谱是目前自然语言处理的一个热门方向。目前知识图谱在各个领域全面开花,如教育、医疗、司法、金融等。 本项目立足医药领域,以垂直型医药网站为数据来源,以疾病为核心,构建起一个包含7类规模为4.4万的知识实体,…

【MIdjourney】图像角度关键词

本篇仅是我个人在使用过程中的一些经验之谈,不代表一定是对的,如有任何问题欢迎在评论区指正,如有补充也欢迎在评论区留言。 1.侧面视角(from side) 侧面视角观察或拍摄的主体通常以其侧面的特征为主要焦点,以便更好地展示其轮廓…

Linux文件系统和日志分析

一、inode表结构 1. inode表 inode号在同一个设备上是唯一的。 inode号是有限资源,它的大小和磁盘大小有关。 访问文件的基本流程 根据文件夹的文件名和inode号的关系找到对应的inode表,再根据inode表(属主 属组)当中的指针找到磁…

Python 全栈体系【四阶】(十一)

第四章 机器学习 机器学习: 传统的机器学习:以算法为核心深度学习:以数据和计算为核心 感知机 perceptron(人工神经元) 可以做简单的分类任务掀起了第一波 AI 浪潮 感知机不能解决线性不可分问题,浪潮…

c# 学习笔记 - 委托(Delegate)

文章目录 1. 委托1.1 委托概述1.2 委托使用1.3 委托的传播 2. 匿名方法2.1 匿名方法概述2.2 匿名方法 1. 委托 1.1 委托概述 委托简介 委托就是对方法的引用,可以理解为例如整型变量的容器可以存储整形数据,委托就是某种方法的容器,可以用来…

解决Android AAPT: error: resource android:attr/lStar not found. 问题

错误信息 /xxx/gjc/.gradle/caches/transforms-2/files-2.1/930c42acd29d295ce5bc495c3b84423e/core-1.9.0/res/values/values.xml:104:5-113:25: AAPT: error: resource android:attr/lStar not found. not found 资源位置 场景 原Android studio中的项目都是在git上面拉的老项…

React Admin 前端脚手架之ant-design-pro

文章目录 一、React Admin 前端脚手架选型二、React Admin 前端脚手架之ant-design-pro三、ant-design-pro使用步骤四、调试主题五、常用总结(持续更新)EditableProTable组件 常用组件EditableProTable组件 编辑某行后,保存时候触发发送请求EditableProTable组件,添加记录提…

关于简单的数据可视化

1. 安装数据可视化必要的openpyxl、pandas,matplotlib等软件包 使用清华源,命令如下: pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn pandaspip install -i https://pypi.tuna.tsingh…

uni-app 从入门到精通 3天快速掌握 文字版 学习专栏

大家好,我是java1234小锋老师。 近日锋哥又卷了一波课程,uni-app 从入门到精通 3天快速掌握教程,文字版视频版。三天掌握。 2023版uniapp从入门到上天视频教程(Java后端无废话版),火爆更新中..._哔哩哔哩_bilibili2023版uniapp从…