代码随想录刷题题Day29

刷题的第二十九天,希望自己能够不断坚持下去,迎来蜕变。😀😀😀
刷题语言:C++
Day29 任务
● 01背包问题,你该了解这些!
● 01背包问题,你该了解这些! 滚动数组
● 416. 分割等和子集

1 动态规划:01背包问题,你该了解这些!

在这里插入图片描述
背包问题的理论基础重中之重是01背包

1.1 01 背包

01 背包:有n件物品和一个最多能背重量为w的背包。第i件物品的重量是weight[i],得到的价值是value[i]。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大

在这里插入图片描述

重量价值
物品0115
物品1320
物品2430

二维dp数组01背包
(1)确定dp数组以及下标的含义
dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
在这里插入图片描述

(2)确定递推公式

1.不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
2.放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

(3)dp数组如何初始化

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:
在这里插入图片描述
状态转移方程是由 i-1 推导出来,那么i为0的时候就一定要初始化
dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。
当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品

for (int j = 0; j < weight[0]; j++) {dp[0][j] = 0;
}
for (int j = weight[0]; j <= bagweight; j++) {dp[0][j] = value[0];
}

在这里插入图片描述
dp[0][j] 和 dp[i][0] 都已经初始化,其他下标的初始化什么数值都可以,因为都会被覆盖。

vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
for (int j = weight[0]; j <= bagweight; j++) {dp[0][j] = value[0];
}

(4)遍历顺序
在这里插入图片描述
先遍历物品,然后遍历背包重量

for (int i = 1; i < weight.size(); i++) {for (int j = 0; j <= bagweight; j++) {if (j < weight[i]) dp[i][j] = dp[i - 1][j];else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);}
}

先遍历背包,再遍历物品

// weight数组的大小 就是物品个数
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量for(int i = 1; i < weight.size(); i++) { // 遍历物品if (j < weight[i]) dp[i][j] = dp[i - 1][j];else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);}
}

(5)举例推导dp数组
在这里插入图片描述

C++:

void test_2_wei_bag_problem1() {vector<int> weight = {1, 3, 4};vector<int> value = {15, 20, 30};int bagweight = 4;// 二维数组vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));// 初始化for (int j = weight[0]; j <= bagweight; j++) {dp[0][j] = value[0];}for (int i = 1; i < weight.size(); i++) {for (int j = 0; j <= bagweight; j++) {if (j < weight[i]) dp[i][j] = dp[i - 1][j];else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);}}cout << dp[weight.size() - 1][bagweight] << endl;    
}
int main() {test_2_wei_bag_problem1();
}

2 动态规划:01背包理论基础(滚动数组)

背包最大重量为4。

物品为:

重量价值
物品0115
物品1320
物品2430

一维dp数组:上一层可以重复利用,直接拷贝到当前层。
dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
(1)确定dp数组的定义
dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]
(2)一维dp数组的递推公式

dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值

dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

(3)一维dp数组如何初始化
假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0
(4)一维dp数组遍历顺序

for (int i = 0; i < weight.size(); i++) {// 遍历物品for (int j = bagweight; j >= weight[i]; j--) {// 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}
}

倒序遍历是为了保证物品i只被放入一次! 如果一旦正序遍历了,那么物品0就会被重复加入多次!

为什么二维dp数组遍历的时候不用倒序呢?
因为对于二维dp,dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖!

(5)举例推导dp数组
在这里插入图片描述
C++:

void test_1_wei_bag_problem() {vector<int> weight = {1, 3, 4};vector<int> value = {15, 20, 30};int bagWeight = 4;// 初始化vector<int> dp(bagWeight + 1, 0);for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}}cout << dp[bagWeight] << endl;
}int main() {test_1_wei_bag_problem();
}

3 分割等和子集

416. 分割等和子集
在这里插入图片描述
思路:
背包问题,有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

本题使用的是01背包,因为元素我们只能用一次。
把01背包问题套到本题:
(1)背包的体积为sum / 2
(2)背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
(3)背包如果正好装满,说明找到了总和为 sum / 2 的子集。
(4)背包中每一个元素是不可重复放入。

动态规划
(1)确定dp数组以及下标的含义
01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]
本题:dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]
(2)确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。
所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

(3)dp数组如何初始化

dp[0]一定是0。
如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。
这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了

(4)确定遍历顺序

for (int i = 0; i < nums.size(); i++) {for (int j = target; j >= nums[i]; j--) {// 每一个元素一定是不可重复放入,所以从大到小遍历dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);}
}

(5)举例推导dp数组
dp[j]的数值一定是小于等于j的,如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j
在这里插入图片描述
C++:

class Solution {
public:bool canPartition(vector<int>& nums) {int sum = 0;vector<int> dp(10001, 0);for (int i = 0; i < nums.size(); i++) {sum += nums[i];}if (sum % 2 == 1) return false;int target = sum / 2;// 开始 01背包for(int i = 0; i < nums.size(); i++) {for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);}}// 集合中的元素正好可以凑成总和targetif (dp[target] == target) return true;return false;}
};

时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( n ) O(n) O(n),虽然dp数组大小为一个常数,但是大常数


鼓励坚持三十天的自己😀😀😀

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/233937.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

自动驾驶轨迹预测

目录 神经网络轨迹预测综述&#xff1a; 比较新的轨迹预测网络 Uber&#xff1a;LaneRCNN[5] Google&#xff1a;VectorNet[6] Huawei&#xff1a;HOME[7] Waymo&#xff1a;TNT[8] Aptive&#xff1a;Covernet[9] NEC&#xff1a;R2P2[10] 商汤&#xff1a;TPNet[11]…

【还不了解 Dockerfile 的同学不是好测试人】

近年来 Docker 非常火&#xff0c;想要玩好 Docker 的话 Dockerfile 是绕不开的&#xff0c;这就好比想要玩好 Linux 服务器绕不开 shell 道理是一样的。 今天我们就来聊一聊 Dockerfile 怎么写&#xff0c;那些指令到底是什么意思。 前言 一、先来看一个简单的 Dockerfile #这…

【EAI 005】EmbodiedGPT:通过具身思维链进行视觉语言预训练的具身智能大模型

论文描述&#xff1a;EmbodiedGPT: Vision-Language Pre-Training via Embodied Chain of Thought 论文作者&#xff1a;Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng Dai, Yu Qiao, Ping Luo 作者单位&#xff1a;The Universi…

Lumerical Monitors------ Global properties

Lumerical Monitors------ Global properties Global properties 全局属性 Global properties 全局属性 在 Lumerical 中&#xff0c;这里以 FDTD 工程文件举例&#xff0c;所有的 monitors 都可以通过上方选项卡中的 monitor 标签页添加。 注意上面有一个 Global properties…

R语言(12):绘图

12.1 创建图形 12.1.1 plot函数 plot(c(1,2,3),c(1,2,4)) plot(c(1,2,3),c(1,2,4),"b") plot(c(-3,3),c(-1,5),"n",xlab "x",ylab "y")12.1.2 添加线条&#xff1a;abline()函数 x <- c(1,2,3) y <- c(1,3,8) plot(x,y) lm…

【PostgreSQL】在DBeaver中实现序列、函数、视图、触发器设计

【PostgreSQL】在DBeaver中实现序列、函数、触发器、视图设计 基本配置一、序列1.1、序列使用1.1.1、设置字段为主键&#xff0c;数据类型默认整型1.1.2、自定义序列&#xff0c;数据类型自定义 1.2、序列延申1.2.1、理论1.2.2、测试1.2.3、小结 二、函数2.1、SQL直接创建2.1.1…

【redis】Redis中的字典类型:数据结构与使用方法

文章目录 Redis中的字典类型&#xff1a;数据结构与使用方法简介如何提高哈希表性能如何使用 Redis中的字典类型&#xff1a;数据结构与使用方法 简介 Redis中的字典类型的底层实现是哈希表&#xff08;Hash Table&#xff09;。 Redis的字典使用哈希表作为底层实现&#xf…

目标检测再升级!YOLOv8模型训练和部署

YOLOv8 是 Ultralytics 开发的 YOLO&#xff08;You Only Look Once&#xff09;物体检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的SOTA模型&#xff0c;它建立在先前YOLO成功基础上&#xff0c;并引入了新功能和改进&#xff0c;以进一步提升性能和灵活性。它可…

【conda】conda 版本控制和环境迁移/安装conda加速工具mamba /conda常用指令/Anaconda配置

【conda】安装conda加速工具mamba /conda常用指令/Anaconda配置 0. conda 版本控制和环境迁移1. 安装conda加速工具mamba2. conda install version3. [Anaconda 镜像](https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/)使用帮助4. error deal 0. conda 版本控制和环境迁移…

福建科立讯通信 指挥调度管理平台 多处文件上传漏洞复现

0x01 产品简介 福建科立讯通信指挥调度管理平台是一个专门针对通信行业的管理平台。该产品旨在提供高效的指挥调度和管理解决方案,以帮助通信运营商或相关机构实现更好的运营效率和服务质量。该平台提供强大的指挥调度功能,可以实时监控和管理通信网络设备、维护人员和工作任…

使用开源通义千问模型(Qwen)搭建自己的大模型服务

目标 1、使用开源的大模型服务搭建属于自己的模型服务&#xff1b; 2、调优自己的大模型&#xff1b; 选型 采用通义千问模型&#xff0c;https://github.com/QwenLM/Qwen 步骤 1、下载模型文件 开源模型库&#xff1a;https://www.modelscope.cn/models mkdir -p /data/…

【MATLAB】ICEEMDAN_LSTM神经网络时序预测算法

有意向获取代码&#xff0c;请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 ICEEMDAN-LSTM神经网络时序预测算法是一种结合了改进的完全扩展经验模态分解&#xff08;ICEEMDAN&#xff09;和长短期记忆神经网络&#xff08;LSTM&#xff09;的时间序列预测方法。 …

运动耳机怎么选?2024年运动耳机推荐,运动蓝牙耳机排行榜10强

​在现代生活中&#xff0c;音乐和运动已经成为很多人生活不可分割的一部分。运动耳机在这样的背景下变得越来越受欢迎&#xff0c;它们不仅可以在运动时提供音乐的陪伴&#xff0c;还能增加运动时的乐趣和动力。但是&#xff0c;面对市面上众多不同类型的运动耳机&#xff0c;…

springboot集成cas客户端

Background 单点登录SSO(Single Sign ON)&#xff0c;指在多个应用系统中&#xff0c;只需登录一次&#xff0c;即可在多个应用系统之间共享登录。统一身份认证CAS&#xff08;Central Authentication Service&#xff09;是SSO的开源实现&#xff0c;利用CAS实现SSO可以很大程…

TikTok时代的社交红利:用户生成内容的崛起

TikTok&#xff0c;这款短视频平台在全球范围内掀起了一场社交媒体的新浪潮。在这个数字化的时代&#xff0c;用户生成内容成为了社交平台的核心&#xff0c;而TikTok正是在这一潮流中崭露头角。本文将深入探讨TikTok时代的社交红利&#xff0c;聚焦用户生成内容的崛起&#xf…

服务器运行状况监控工具

服务器运行状况监视提供了每个服务器状态和性能的广泛概述&#xff0c;通过监控服务器指标&#xff0c;如 CPU 使用率、内存消耗、I/O、磁盘使用率、进程等&#xff0c;服务器运行状况监控可以避免服务器停机。 服务器性能监控指标 服务器是网络中最重要的组件之一&#xff0…

大创项目推荐 深度学习图像修复算法 - opencv python 机器视觉

文章目录 0 前言2 什么是图像内容填充修复3 原理分析3.1 第一步&#xff1a;将图像理解为一个概率分布的样本3.2 补全图像 3.3 快速生成假图像3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构3.5 使用G(z)生成伪图像 4 在Tensorflow上构建DCGANs最后 0 前言 &#…

构建免费的Dokan和WooCommerce构建线上课程市场在线销售数字课程

我们知道创建良好的学习说明和材料很困难。但当涉及到销售时&#xff0c;就变得更加困难。如果您无法出售您的课程&#xff0c;那么没有什么比这更令人沮丧的了。 幸运的是&#xff0c;如果您使用的是 WordPress 网站&#xff0c;那么您可以非常轻松且免费地完成此操作。借助L…

阿里云99元服务器赠送云·原生建站(电商版)

购买阿里云99元服务器赠送云原生建站&#xff08;电商版&#xff09;&#xff0c;什么是云原生建站&#xff1f;类似模板建站&#xff0c;云原生建站预置响应式模板CMS内容管理系统&#xff0c;用户可以按需随意切换模板样式&#xff0c;通过模板可视化在线编辑轻松完成网站搭建…

二进制部署

HOST HostnameIP地址flannedAPPmaster192.169.116.10ETCD\APIserver\Scheduler\Controller-Managernode1192.168.116.11172.17.28.0ETCD,Flanned,Kubelet,kube-proxynode2192.168.116.12172.17.26.0ETCD,Flanned,Kubelet,kube-proxy Kubernetes社区 Kubernetes文档 ETCD mas…