图片双线性插值原理解析与代码 Python

一、原理解析

图片插值是图片操作中最常用的操作之一。为了详细解析其原理,本文以 3×3 图片插值到 5×5 图片为例进行解析。如上图左边蓝色方框是 5×5 的目标图片,右边红色方框是 3×3 的源图片。上图中,蓝/红色方框是图片,图片中的蓝/红色小圆点是图片中的像素,蓝/红色实线箭头是图片坐标系,蓝/红色虚线箭头是图片像素坐标系,从中可以发现图片框是要比最外圈像素所围成的像素框大一圈。图片插值指的是将右边红色方框放大到与左边蓝色方框同大,然后通过右边放大后的 3×3 的红色像素值计算得到左边的 5×5 的蓝色像素值。通常意义下所说的图片缩放或插值指的是两幅图片的图片框之间的关系而不是像素框之间的关系。基于图片框缩放,3×3 的图片要插值搭到 5×5 的图片,指的是红色方框从上图放大到下图的样子。

如果采用像素框缩放,那红色方框放大后,需要保证 3×3 的像素的四个角的像素位置与蓝色方框的 5×5 像素的四个角的像素位置完全重合,那放大后的红色方框要比上图的红色方框再大一小圈。基于图片框缩放,从上图中可以发现,当 3×3 的红色图片被插值到 5×5 的图片后,原本 3×3 的像素位置也会相应的发生缩放。

将参考辅助线调整后,如上左图所示,在完成缩放后,那图片插值的剩余过程就是通过红色像素值计算蓝色像素值。拿一个最左下角红色方格举例如上右图所示,已知四个红色像素点的位置和像素值,同样已知蓝色像素点 P 的位置,求 P 的像素值。

二维线性插值是图片插值中最常用的插值算法。二维线性插值的原理为,首先基于一维线性插值原理,通过 Q_{11} 和 Q_{12} 计算得到 R_{1} 的像素值,通过 Q_{21} 和 Q_{22} 计算得到 R_{2} 的像素值,然后通过 R_{1} 和 R_{2} 计算得到 P 的像素值。

通过 Q_{11} 和 Q_{12} 计算得到 R_{1} 的像素值的公式为(线性方程):

R_{1} = \frac{x_{p}-x_{2}}{x_{1}-x_{2}}Q_{11}+\frac{x_{1}-x_{p}}{x_{1}-x_{2}}Q_{12}

通过 Q_{21} 和 Q_{22} 计算得到 R_{2} 的像素值的公式为(线性方程):

R_{2} = \frac{x_{p}-x_{2}}{x_{1}-x_{2}}Q_{21}+\frac{x_{1}-x_{p}}{x_{1}-x_{2}}Q_{22}

通过 R_{1} 和 R_{2} 计算得到 P 的像素值的公式为(线性方程):

P = \frac{y_{p}-y_{2}}{y_{1}-y_{2}}R_{1}+\frac{y_{1}-y_{p}}{y_{1}-y_{2}}R_{2}

整理得到:

P = (1-u)(1-v)Q_{11} + (1-u)vQ_{12} + u(1-v)Q_{21} + uvQ_{22}

其中

u = x_{p} - x_{1}, v = y_{p} - y_{1}

这里需要特别说明的是,边界点的处理方法,如上右图的 S 点,其位于四个红色像素点以外,但由于其位于图片的最左下角边界上,其下面没有红色像素点,只有上面有两个像素点。但针对 S 点像素值的计算我们依然使用这四个红色像素点,相当于 S 点是 R_{1} 与 R_{2} 的直线段的延伸。

二、Python 代码

关于代码实现需要注意 3 个地方:

1. 上面原理讲的是从原图片像素坐标映射到目标图片像素坐标的过程,但实际编程一般采用从目标图片像素坐标映射到源图片像素坐标;

2. 在缩放比计算时注意,图片框缩放计算公式是 src_h/dst_h,但像素框缩放计算公式是 (src_h-1)/(dst_h-1);

3. 在图片边界处的处理为,需要保证所计算的左下角像素点坐标大于等于 0 且小于等于图片尺寸 -2,小于等于图片尺寸 -2 的原因是保证右上角像素点坐标小于等于图片尺寸 -1,边界处的像素点的计算依然需要最近邻的四个点。

import numpy as np
import cv2def bilinear(src_img, dst_shape):# 计算目标图片到原图片的缩放比,且是图片坐标系的缩放,不是像素坐标系的缩放,像素位于图像像素格的中心src_h, src_w = src_img.shape[0], src_img.shape[1]dst_h, dst_w = dst_shapescale_h, scale_w = src_h/dst_h, src_w/dst_w              # 如果是像素坐标系的缩放则应该为 (src_h-1)/(dst_h-1)# 定义目标图片并向其中填充像素值,遍历目标图片像中的每个像素点dst_img = np.zeros((dst_h, dst_w, 3), np.uint8)for i in range(dst_h):for j in range(dst_w):# 将 目标像素坐标系下的坐标 --> 目标图像坐标系下的坐标(+0.5) --> 源图像坐标系下的坐标(*scale) --> 源像素坐标系下的坐标(-0.5)src_x = (j + 0.5) * scale_w - 0.5src_y = (i + 0.5) * scale_h - 0.5# 在非边界情况下获取左下角图像像素点坐标,在左/下边界的情况下保证大于等于0,在右/上边界的情况下保证小于等于src-2,以保证计算时所用的右上角像素坐标小于等于src-1src_x_int = min(max(int(src_x), 0), src_w-2)src_y_int = min(max(int(src_y), 0), src_h-2)# 获取所求像素点相比左下角像素点的距离src_x_float = src_x - src_x_intsrc_y_float = src_y - src_y_int# 计算每个像素值dst_img[i, j, :] = (1. - src_y_float) * (1. - src_x_float) * src_img[src_y_int, src_x_int, :] + \(1. - src_y_float) * src_x_float * src_img[src_y_int, src_x_int + 1, :] + \src_y_float * (1. - src_x_float) * src_img[src_y_int + 1, src_x_int, :] + \src_y_float * src_x_float * src_img[src_y_int + 1, src_x_int + 1, :]return dst_imgif __name__ == "__main__":img_path = "test.jpg"src_img = cv2.imread(img_path, cv2.IMREAD_COLOR)dst_shape = (300, 400)# 图片放缩均采用双线性插值法# opencv的放缩图片函数resize_image = cv2.resize(src_img, (400, 300), interpolation=cv2.INTER_LINEAR)# 自定义的图片放缩函数dst_img = bilinear(src_img, dst_shape)cv2.imwrite("new_resize.jpg", resize_image)cv2.imwrite("new.jpg", dst_img)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/235735.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity编辑器扩展(外挂)

每日一句:未来的样子藏在现在的努力里 目录 什么是编译器开发 C#特性[System.Serializable] 特殊目录 命名空间 /*检视器属性控制*/ //添加变量悬浮提示文字 //给数值设定范围(最小0,最大150) //指定输入框,拥有5行 //默认…

@JsonFormat与@DateTimeFormat

JsonFormat注解很好的解决了后端传给前端的格式,我们通过使用 JsonFormat可以很好的解决:后台到前台时间格式保持一致的问题 其次,另一个问题是,我们在使用WEB服务的时,可 能会需要用到,传入时间给后台&am…

在Gitee上维护Erpnext源

在Gitee上维护Erpnext源 官方的frappe和erpnext地址: GitHub - frappe/frappe: Low code web framework for real world applications, in Python and Javascript GitHub - frappe/erpnext: Free and Open Source Enterprise Resource Planning (ERP) 1, 仓库地址输入frappe的官…

Java中异常处理-详解

异常(Exception) JVM 默认处理方案 把异常的名称,异常的原因,及异常出错的位置等信息输出在控制台程序停止执行 异常类型 编译时异常必须显示处理,否则程序会发生错误,无法通过编译运行时异常无需显示处理…

华为鸿蒙凉了?谣言还是

华为鸿蒙系统凉了吗?我们从目前的一系列新闻来看。鸿蒙并没有凉,反而愈发强大。从下面的一些新闻事实可以看出华为鸿蒙已经和Android、ios形成竞争对手了。 1、华为宣布鸿蒙4.0的发布 2023年7月,华为开发者大会上正式宣布。华为发布了备受期…

算法第4版 第2章排序

综述:5个小节,四种排序应用,初级排序、归并排序、快速排序、优先队列 2.1.初级排序 排序算法模板,less(), exch(), 排序代码在sort()方法中; 选择排序:如升序排列,1.找到数组中最小的元素&am…

一种DevOpts的实现方式:基于gitlab的CICD(一)

写在之前 笔者最近准备开始入坑CNCF毕业的开源项目,看到其中有一组开源项目的分类就是DevOpts。这个领域内比较出名的项目是Argocd,Argo CD 是一个用于 Kubernetes 的持续交付 (Continuous Delivery) 工具,它以声明式的方式实现了应用程序的…

【Docker】配置阿里云镜像加速器

默认情况下,将来从docker hub (https://hub.docker.com )上下载镜像太慢,所以一般配置镜像加速器。 没有账号的注册一个账号并登录 登录之后点击控制台 查看 cat /etc/docker/daemon.json

【大数据进阶第三阶段之Hive学习笔记】Hive安装

目录 1、环境准备 2、下载安装 3、配置环境变量 4、配置文件 4.1、配置hive-env.sh ​编辑4.2、配置hive-site.xml 5、上传配置jar 6、启动 1、环境准备 安装hadoop 以及 zookeeper、mysql 【大数据进阶第二阶段之Hadoop学习笔记】Hadoop 运行环境搭建-CSDN博客 《z…

C++上位软件通过Snap7开源库访问西门子S7-200/LOGO PLC/合信M226ES PLC V存储区的方法

前言 在前面例程中谈到了C 通过Snap7开源库S7通信库跟西门子S7-1200PLC/S7-1500PLC以及合信CTMC M226ES PLC/CPU226 PLC通信的方式方法和应用例程。但是遗憾的是Snap7中根据官方资料显示只能访问PLC的 DB区、MB区、C区、T区 、I区、Q区,并没有提到有关如何访问S7-20…

HNU-数据库系统-作业

数据库系统-作业 计科210X 甘晴void 202108010XXX 第一章作业 10.09 1.(名词解释)试述数据、数据库、数据库管理系统、数据库系统的概念。 数据,是描述事物的符号记录。 数据库(DB),是长期存储在计算机内、有组织、可共享的大量…

蓝桥杯练习题(二)

📑前言 本文主要是【算法】——蓝桥杯练习题(二)的文章,如果有什么需要改进的地方还请大佬指出⛺️ 🎬作者简介:大家好,我是听风与他🥇 ☁️博客首页:CSDN主页听风与他 …

音乐制作软件Studio One mac有哪些特点

Studio One mac是一款专业的音乐制作软件,该软件提供了全面的音频编辑和混音功能,包括录制、编曲、合成、采样等多种工具,可用于制作各种类型的音乐,如流行音乐、电子音乐、摇滚乐等。 Studio One mac软件特点 1. 直观易用的界面&…

软件测试|详解 Pytest 参数化:简化测试用例的编写

简介 Pytest 是一个广泛使用的 Python 测试框架,它提供了丰富的功能来编写和执行测试用例。其中一个强大的特性是参数化,它允许我们通过一种简洁的方式运行多个输入参数的相似测试用例,从而减少冗余的代码。本文将详细介绍 Pytest 的参数化功…

如何给字符串字段添加索引

MySQL是支持前缀索引的,可以定义字符串的一部分作为索引,如果创建索引的语句不指定前缀长度,那么索引就会包含整个字符串。 alter table SUser add index index1(email);alter table SUser add index index2(email(6)); 如上两个创建索引的语…

嵌入式培训机构四个月实训课程笔记(完整版)-Linux系统编程第十天-Linux下mplayer音乐播放器练习题(物联技术666)

更多配套资料CSDN地址:点赞+关注,功德无量。更多配套资料,欢迎私信。 物联技术666_嵌入式C语言开发,嵌入式硬件,嵌入式培训笔记-CSDN博客物联技术666擅长嵌入式C语言开发,嵌入式硬件,嵌入式培训笔记,等方面的知识,物联技术666关注机器学习,arm开发,物联网,嵌入式硬件,单片机…

Mondo备份linux操作系统为iso镜像 —— 筑梦之路

简介 Mondo Rescue(以下简称Mondo)可以说是Linux 下的Ghost,它可以将你的系统像照相一样备份至磁带,CD-R,CD-RW,NFS或硬盘分区。Mondo广泛支援LVM,RAID,ext2, ext3, JFS, XFS,Reise…

第十二届全国大学生GIS技能大赛试题、数据以及解题思路

一、赛题说明 第十二届全国大学生GIS应用技能大赛试题,共分为上午和下午两部分 上午题 上午的题和往届的没啥区别,还是偏向于考数据整合、空间配准、数字化等基础的数据处理能力。 下午两套题都需要做哟 第一套 第二套,考察三维分析 关于…

知识引导的分子生成扩散模型 - KGDiff 评测

一、背景介绍 KGDiff模型是一个基于口袋的知识引导的3D分子生成的扩散模型,来源于上海交通大学计算机学院涂仕奎教授的文章: 《KGDiff: towards explainable target-aware molecule generation with knowledge guidance》。文章链接:*KGDiff…

LeetCode 145. 二叉树的后序遍历

145. 二叉树的后序遍历 给你一棵二叉树的根节点 root ,返回其节点值的 后序遍历 。 示例 1: 输入:root [1,null,2,3] 输出:[3,2,1]示例 2: 输入:root [] 输出:[]示例 3: 输入&…