大模型学习与实践笔记(五)

一、环境配置

1. huggingface 镜像下载 sentence-transformers 开源词向量模型

import os# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'# 下载模型
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/data/model/sentence-transformer')

2.下载 NLTK 相关资源

git clone https://gitee.com/yzy0612/nltk_data.git  --branch gh-pagescd nltk_datawget -O averaged_perceptron_tagger.zip https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/packages/taggers/averaged_perceptron_tagger.zipwget -O punkt.zip https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/packages/tokenizers/punkt.zip

二、检索库构建

1.构建知识向量库

# 首先导入所需第三方库
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import UnstructuredMarkdownLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from tqdm import tqdm
import os# 获取文件路径函数
def get_files(dir_path):# args:dir_path,目标文件夹路径file_list = []for filepath, dirnames, filenames in os.walk(dir_path):# os.walk 函数将递归遍历指定文件夹for filename in filenames:# 通过后缀名判断文件类型是否满足要求if filename.endswith(".md"):# 如果满足要求,将其绝对路径加入到结果列表file_list.append(os.path.join(filepath, filename))elif filename.endswith(".txt"):file_list.append(os.path.join(filepath, filename))return file_list# 加载文件函数
def get_text(dir_path):# args:dir_path,目标文件夹路径# 首先调用上文定义的函数得到目标文件路径列表file_lst = get_files(dir_path)# docs 存放加载之后的纯文本对象docs = []# 遍历所有目标文件for one_file in tqdm(file_lst):file_type = one_file.split('.')[-1]if file_type == 'md':loader = UnstructuredMarkdownLoader(one_file)elif file_type == 'txt':loader = UnstructuredFileLoader(one_file)else:# 如果是不符合条件的文件,直接跳过continuedocs.extend(loader.load())return docs# 目标文件夹
tar_dir = ["/root/data/InternLM","/root/data/InternLM-XComposer","/root/data/lagent","/root/data/lmdeploy","/root/data/opencompass","/root/data/xtuner"
]# 加载目标文件
docs = []
for dir_path in tar_dir:docs.extend(get_text(dir_path))# 对文本进行分块
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)# 加载开源词向量模型
embeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")# 构建向量数据库
# 定义持久化路径
persist_directory = 'data_base/vector_db/chroma'
# 加载数据库
vectordb = Chroma.from_documents(documents=split_docs,embedding=embeddings,persist_directory=persist_directory  # 允许我们将persist_directory目录保存到磁盘上
)
# 将加载的向量数据库持久化到磁盘上
vectordb.persist()

运行效果

2.将InternLM 接入 LangChain

from langchain.llms.base import LLM
from typing import Any, List, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from transformers import AutoTokenizer, AutoModelForCausalLM
import torchclass InternLM_LLM(LLM):# 基于本地 InternLM 自定义 LLM 类tokenizer : AutoTokenizer = Nonemodel: AutoModelForCausalLM = Nonedef __init__(self, model_path :str):# model_path: InternLM 模型路径# 从本地初始化模型super().__init__()print("正在从本地加载模型...")self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)self.model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(torch.bfloat16).cuda()self.model = self.model.eval()print("完成本地模型的加载")def _call(self, prompt : str, stop: Optional[List[str]] = None,run_manager: Optional[CallbackManagerForLLMRun] = None,**kwargs: Any):# 重写调用函数system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""messages = [(system_prompt, '')]response, history = self.model.chat(self.tokenizer, prompt , history=messages)return response@propertydef _llm_type(self) -> str:return "InternLM"

3.构建检索问答链

from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import os# 定义 Embeddings
embeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")# 向量数据库持久化路径
persist_directory = 'data_base/vector_db/chroma'# 加载数据库
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embeddings
)from LLM import InternLM_LLM
llm = InternLM_LLM(model_path = "/root/model/Shanghai_AI_Laboratory/internlm-chat-7b")
llm.predict("你是谁")from langchain.prompts import PromptTemplate# 我们所构造的 Prompt 模板
template = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答案。尽量使答案简明扼要。总是在回答的最后说“谢谢你的提问!”。
{context}
问题: {question}
有用的回答:"""# 调用 LangChain 的方法来实例化一个 Template 对象,该对象包含了 context 和 question 两个变量,在实际调用时,这两个变量会被检索到的文档片段和用户提问填充
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],template=template)from langchain.chains import RetrievalQAqa_chain = RetrievalQA.from_chain_type(llm,retriever=vectordb.as_retriever(),return_source_documents=True,chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})# 检索问答链回答效果
question = "什么是InternLM"
result = qa_chain({"query": question})
print("检索问答链回答 question 的结果:")
print(result["result"])# 仅 LLM 回答效果
result_2 = llm(question)
print("大模型回答 question 的结果:")
print(result_2)

运行效果:

4.gradio 部署

from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import os
from LLM import InternLM_LLM
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQAdef load_chain():# 加载问答链# 定义 Embeddingsembeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")# 向量数据库持久化路径persist_directory = 'data_base/vector_db/chroma'# 加载数据库vectordb = Chroma(persist_directory=persist_directory,  # 允许我们将persist_directory目录保存到磁盘上embedding_function=embeddings)# 加载自定义 LLMllm = InternLM_LLM(model_path = "/root/model/Shanghai_AI_Laboratory/internlm-chat-7b")# 定义一个 Prompt Templatetemplate = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答案。尽量使答案简明扼要。总是在回答的最后说“谢谢你的提问!”。{context}问题: {question}有用的回答:"""QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],template=template)# 运行 chainqa_chain = RetrievalQA.from_chain_type(llm,retriever=vectordb.as_retriever(),return_source_documents=True,chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})return qa_chainclass Model_center():"""存储检索问答链的对象 """def __init__(self):# 构造函数,加载检索问答链self.chain = load_chain()def qa_chain_self_answer(self, question: str, chat_history: list = []):"""调用问答链进行回答"""if question == None or len(question) < 1:return "", chat_historytry:chat_history.append((question, self.chain({"query": question})["result"]))# 将问答结果直接附加到问答历史中,Gradio 会将其展示出来return "", chat_historyexcept Exception as e:return e, chat_historyimport gradio as gr# 实例化核心功能对象
model_center = Model_center()
# 创建一个 Web 界面
block = gr.Blocks()
with block as demo:with gr.Row(equal_height=True):   with gr.Column(scale=15):# 展示的页面标题gr.Markdown("""<h1><center>InternLM</center></h1><center>书生浦语</center>""")with gr.Row():with gr.Column(scale=4):# 创建一个聊天机器人对象chatbot = gr.Chatbot(height=450, show_copy_button=True)# 创建一个文本框组件,用于输入 prompt。msg = gr.Textbox(label="Prompt/问题")with gr.Row():# 创建提交按钮。db_wo_his_btn = gr.Button("Chat")with gr.Row():# 创建一个清除按钮,用于清除聊天机器人组件的内容。clear = gr.ClearButton(components=[chatbot], value="Clear console")# 设置按钮的点击事件。当点击时,调用上面定义的 qa_chain_self_answer 函数,并传入用户的消息和聊天历史记录,然后更新文本框和聊天机器人组件。db_wo_his_btn.click(model_center.qa_chain_self_answer, inputs=[msg, chatbot], outputs=[msg, chatbot])gr.Markdown("""提醒:<br>1. 初始化数据库时间可能较长,请耐心等待。2. 使用中如果出现异常,将会在文本输入框进行展示,请不要惊慌。 <br>""")
gr.close_all()
# 直接启动
demo.launch()

运行效果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/235958.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JQuery异步加载表格选择记录

JQuery异步加载表格选择记录 JQuery操作表格 首先在页面中定义一个表格对象 <table id"insts" class"table"><thead><tr><th>列1</th><th>列2</th><th>例3</th><th></th></tr>…

C++ 数组分页,经常有用到分页,索性做一个简单封装 已解决

在项目设计中&#xff0c; 有鼠标滑动需求&#xff0c;但是只能说能力有限&#xff0c;索性使用 php版本的数组分页&#xff0c;解决问题。 经常有用到分页&#xff0c;索性做一个简单封装、 测试用例 QTime curtime QTime::currentTime();nHour curtime.hour();nMin curtim…

leetcode动态规划(零钱兑换II、组合总和 Ⅳ)

518.零钱兑换II 给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。 示例 1: 输入: amount 5, coins [1, 2, 5] 输出: 4 解释: 有四种方式可以凑成总金额: 55 5221 52111 511111 示例 2: 输入: amount 3, coi…

Macos下修改Python版本

MacOS下修改Python版本 安装 查看本机已安装的Python版本&#xff1a;where python3 ~ where python3 /usr/bin/python3 /usr/local/bin/python3 /Library/Frameworks/Python.framework/Versions/3.12/bin/python3如果没有你想要的版本&#xff0c;去python官网下载安装包。…

uniapp自定义封装只有时分秒的组件,时分秒范围选择

说实话&#xff0c;uniapp和uview的关于只有时分秒的组件实在是不行。全是日历&#xff0c;但是实际根本就不需要日历这玩意。百度了下&#xff0c;终于看到了一个只有时分秒的组件。原地址&#xff1a;原地址&#xff0c;如若侵犯请联系我删除 <template><view clas…

雷达信号处理——恒虚警检测(CFAR)

雷达信号处理的流程 雷达信号处理的一般流程&#xff1a;ADC数据——1D-FFT——2D-FFT——CFAR检测——测距、测速、测角。 雷达目标检测 首先要搞清楚什么是检测&#xff0c;检测就是判断有无。雷达在探测的时候&#xff0c;会出现很多峰值&#xff0c;这些峰值有可能是目标…

【微服务】日志搜集elasticsearch+kibana+filebeat(单机)

日志搜集eskibanafilebeat&#xff08;单机&#xff09; 日志直接输出到es中&#xff0c;适用于日志量小的项目 基于7.17.16版本 主要配置在于filebeat&#xff0c; es kibana配置改动不大 环境部署 es kibana单机环境部署 略 解压即可 常见报错&#xff0c;百度即可。 记录…

stm32引脚输入输出设置寄存器操作汇总

引脚数据表说明 实际历程 下图时正点原子i2c时使用的宏定义 注意事项 1.实际使用的并不是标准的输入输出&#xff08;i2c的开漏&#xff09;模式。 解释 SDA_IN() 使用了 0x8 0b 10 00 bit3 bit2 [0b10] bit1 bit0[00] &#xff08;上下拉输入模式&#xff09; &…

梦想贩卖机升级版知识付费源码实现流量互导,多渠道变现

梦想贩卖机升级版&#xff0c;变现宝吸收了资源变现类产品的许多优势&#xff0c;并剔除了那些无关紧要的元素&#xff0c;使得本产品在运营和变现能力方面实现了质的飞跃。多领域素材资源知识变现营销裂变独立版本。 支持&#xff1a;视频、音频、图文、文档、会员、社群、用…

yolov8n 瑞芯微RKNN和地平线Horizon芯片仿真测试部署,部署工程难度小、模型推理速度快

特别说明&#xff1a;参考官方开源的yolov8代码、瑞芯微官方文档、地平线的官方文档&#xff0c;如有侵权告知删&#xff0c;谢谢。 模型和完整仿真测试代码&#xff0c;放在github上参考链接 模型和代码。 因为之前写了几篇yolov8模型部署的博文&#xff0c;存在两个问题&…

记录一下Canal的错误,主要是top.javatool.canal.client.util下的StringConvertUtil引起的

项目场景&#xff1a; 提示&#xff1a;这里简述项目相关背景&#xff1a; 由于数据库的一个localdatetime字段是空的&#xff0c; 然后修改数据库数据同步canal的时候报了这个错误&#xff1a; Caused by: java.lang.IllegalArgumentException: Can not set java.time.LocalD…

D盘能不能随便格式化?根据不同情况来分析

随着计算机技术的发展&#xff0c;D盘已成为许多用户存储重要数据和文件的一部分。然而&#xff0c;当我们想要对D盘进行格式化时&#xff0c;是否可以随意进行操作呢&#xff1f;本文将探讨这一问题&#xff0c;并给出关于“电脑D盘数据格式化后怎么恢复”的相关方法。 图片来…

jsonvue-mobile 联动方式说明。

目录 jsonvue-mobile的联动类型分为两种 一种是命令式的&#xff1a; 另一种是响应式的&#xff1a; 联动场景 场景一&#xff1a;某一个字段的值变化时&#xff0c;同步修改另一个字段的值 命令式&#xff1a; 响应式&#xff1a; 场景一演示效果GIF 场景二&#xff1…

kafka下载安装部署

Apache kafka 是一个分布式的基于push-subscribe的消息系统&#xff0c;它具备快速、可扩展、可持久化的特点。它现在是Apache旗下的一个开源系统&#xff0c;作为hadoop生态系统的一部分&#xff0c;被各种商业公司广泛应用。它的最大的特性就是可以实时的处理大量数据以满足各…

基于单片机设计的智慧农业大棚检测系统

一、设计目标 本项目基于单片机设计一个智慧农业大棚检测系统&#xff0c;以提供实时监测和管理大棚环境的关键参数。系统支持环境温度、湿度检测&#xff0c;光照强度检测&#xff0c;并能根据预设的阀值进行报警提示。为了实现数据的显示和管理&#xff0c;该系统还利用Qt开…

浏览器输入一个域名的解析过程

目录 从输入一个域名的解析过程 以www.baidu.com为例子 本地缓存和hosts文件 mDNS和LLMNR NBT-NS 路由器广播 Root域名服务器 顶级域名服务器 目标域名服务器 DNS解析完成 操作系统发起TCP连接&#xff1a; TCP三次握手&#xff1a; TCP连接的建立采用经典的三次握手过程&#…

C2855 命令行选项“/Zc:referenceBinding“与预编译头不一致和C2855 命令行选项“/Zc:__cplusplus“与预编译头不一致

在VS2019和Qt5.12.12环境下&#xff0c;笔记本上编译这个工程没有问题&#xff0c;把工程拷贝到台式机上&#xff0c;一样的配置&#xff0c;但是报如下错误&#xff1a; 打开项目的命令行配置如下&#xff1a; 解决办法&#xff1a;在编译选项"/Zc:referenceBinding"…

ptaR7-5打探基priority_queue的使用

题目 最近乐乐开发出了一款新的游戏《打探基》&#xff0c;这款游戏需要多人配合来玩&#xff0c;至少三个游戏玩家同时出招才能使探基的血量下降一点&#xff0c;同时&#xff0c;出招的每个人战斗力下降一点&#xff0c;当战斗力小于10的时候将不能再出招&#xff0c;不知道…

electron+vue网页直接播放RTSP视频流?

目前大部分摄像头都支持RTSP协议&#xff0c;但是在浏览器限制&#xff0c;最新版的浏览器都不能直接播放RTSP协议&#xff0c;Electron 桌面应用是基于 Chromium 内核的&#xff0c;所以也不能直接播放RTSP&#xff0c;但是我们又有这个需求怎么办呢&#xff1f; 市场上的方案…

一小时掌握:使用ScrapySharp和C#打造新闻下载器

引言 爬虫技术是指通过编程的方式&#xff0c;自动从互联网上获取和处理数据的技术。爬虫技术有很多应用场景&#xff0c;比如搜索引擎、数据分析、舆情监测、电商比价等。爬虫技术也是一门有趣的技术&#xff0c;可以让你发现网络上的各种有价值的信息。 本文将介绍如何使用…